Error analysis of an extended discontinuous galerkin method for highly-oscillatory problems

被引:0
作者
French, Donald [1 ]
Vaughan, Benjamin [1 ]
Toprakseven, Suayip [2 ]
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Artvin Coruh Univ, Fac Engn, Dept Comp Sci, Artvin, Turkey
来源
SIGMA JOURNAL OF ENGINEERING AND NATURAL SCIENCES-SIGMA MUHENDISLIK VE FEN BILIMLERI DERGISI | 2021年 / 39卷 / 05期
关键词
Discontinuous Galerkin; extended discontinuous Galerkin; high frequencies; elliptic boundary value problem; FINITE-ELEMENT-METHOD; WEAK VARIATIONAL FORMULATION; HELMHOLTZ-EQUATION; PARTITION; PDES;
D O I
10.14744/sigma.2021.00043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this report we introduce an extended discontinuous Galerkin (XDG) method. Our XDG scheme is based on the Babuska-Zlamal approach and we apply it to a class of prototype elliptic boundary value problems that have solutions consisting of smooth functions perturbed by a set of high frequency modes which occupy a narrow band. The XDG scheme we study is enriched by trigonometric functions that cover the range of these perturbations. A theoretical error analysis is provided that shows the method converges and gives specifics on its accuracy. Computations with the XDG scheme further demonstrate the efficacy of this approach.
引用
收藏
页码:64 / 73
页数:10
相关论文
共 44 条
[1]   A survey of the extended finite element [J].
Abdelaziz, Yazid ;
Hamouine, Abdelmadjid .
COMPUTERS & STRUCTURES, 2008, 86 (11-12) :1141-1151
[2]  
Babuska I, 1997, INT J NUMER METH ENG, V40, P727, DOI 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO
[3]  
2-N
[4]   NONCONFORMING ELEMENTS IN FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I ;
ZLAMAL, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1973, 10 (05) :863-875
[5]  
Belytschko T, 1999, INT J NUMER METH ENG, V45, P601, DOI 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO
[6]  
2-S
[7]  
Brenne SC, 1994, MATH THEORY FINITE E
[8]   Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation [J].
Cessenat, O ;
Després, B .
JOURNAL OF COMPUTATIONAL ACOUSTICS, 2003, 11 (02) :227-238
[9]   Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem [J].
Cessenat, O ;
Despres, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (01) :255-299
[10]   An extended finite element method for two-phase fluids [J].
Chessa, J ;
Belytschko, T .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2003, 70 (01) :10-17