Effect of bottleneck size on lithium migration in lithium garnets Li7La3Zr2O12 (LLZO)

被引:20
作者
Chen, Fei [1 ]
Xu, Like [1 ]
Li, Junyang [1 ]
Yang, Ying [2 ]
Shen, Qiang [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
Molecular dynamic simulation; LLZO; Bottleneck size; Lithium ion diffusion; LI ION CONDUCTORS; ACTIVATION-ENERGY; CONDUCTIVITY; TRANSPORT; FAMILY; GE; SN;
D O I
10.1007/s11581-020-03582-w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Molecular dynamic simulations were performed on element-screened Li7La3Zr2O12 (LLZO)-equivalent doping system to reveal the effect of bottleneck (surface between the polyhedron of 24d and 96h site in cubic LLZO) size on lithium ion diffusion in this garnet-type solid electrolyte. The relationship between lithium ion diffusivity, lattice constant (volume), and bottleneck size were further studied. Herein, we found unneglectable discreteness between lattice constant (volume) and lithium ion diffusivity; beyond that, a quasi-linear relationship between bottleneck size and lithium ion diffusivity under high temperature (1000 similar to 1400 K) was unveiled. Our results show that by simply regulating the bottleneck size, the diffusion properties of lithium garnets can be further improved.
引用
收藏
页码:3193 / 3198
页数:6
相关论文
共 26 条
[1]   Relationship between bond valence and bond softness of alkali halides and chalcogenides [J].
Adams, S .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2001, 57 (57) :278-287
[2]   High power lithium ion battery materials by computational design [J].
Adams, Stefan ;
Rao, R. Prasada .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08) :1746-1753
[3]   Crystal Structure of Fast Lithium-ion-conducting Cubic Li7La3Zr2O12 [J].
Awaka, Junji ;
Takashima, Akira ;
Kataoka, Kunimitsu ;
Kijima, Norihito ;
Idemoto, Yasushi ;
Akimoto, Junji .
CHEMISTRY LETTERS, 2011, 40 (01) :60-62
[4]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[5]   ELECTRICAL-PROPERTIES OF AMORPHOUS LITHIUM ELECTROLYTE THIN-FILMS [J].
BATES, JB ;
DUDNEY, NJ ;
GRUZALSKI, GR ;
ZUHR, RA ;
CHOUDHURY, A ;
LUCK, CF ;
ROBERTSON, JD .
SOLID STATE IONICS, 1992, 53 :647-654
[6]   Origin of the Phase Transition in Lithium Garnets [J].
Chen, Fei ;
Li, Junyang ;
Huang, Zhifeng ;
Yang, Ying ;
Shen, Qiang ;
Zhang, Lianmeng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2018, 122 (04) :1963-1972
[7]   The structure of lithium garnets:: cation disorder and clustering in a new family of fast Li+ conductors [J].
Cussen, EJ .
CHEMICAL COMMUNICATIONS, 2006, (04) :412-413
[8]   THEORY OF IONIC TRANSPORT IN CRYSTALLOGRAPHIC TUNNELS [J].
FLYGARE, WH ;
HUGGINS, RA .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1973, 34 (07) :1199-1204
[9]   Accelerated Materials Design of Lithium Superionic Conductors Based on First-Principles Calculations and Machine Learning Algorithms [J].
Fujimura, Koji ;
Seko, Atsuto ;
Koyama, Yukinori ;
Kuwabara, Akihide ;
Kishida, Ippei ;
Shitara, Kazuki ;
Fisher, Craig A. J. ;
Moriwake, Hiroki ;
Tanaka, Isao .
ADVANCED ENERGY MATERIALS, 2013, 3 (08) :980-985
[10]   The General Utility Lattice Program (GULP) [J].
Gale, JD ;
Rohl, AL .
MOLECULAR SIMULATION, 2003, 29 (05) :291-341