Transmitter/receiver polarisation optimisation based on oblique projection filtering for mainlobe interference suppression in polarimetric multiple-input-multiple-output radar

被引:18
作者
Xiang, Zhe [1 ,2 ]
Chen, Baixiao [1 ,2 ]
Yang, Minglei [1 ,2 ]
机构
[1] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Collaborat Innovat Ctr Informat Sensing & Underst, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
MIMO radar; interference suppression; radar receivers; radar transmitters; array signal processing; filtering theory; electromagnetic wave polarisation; radar polarimetry; optimisation; transmitter polarisation optimisation; receiver polarisation optimisation; oblique projection filtering; mainlobe interference suppression; polarimetric multiple-input-multiple-output radar; radar transmitter; radar receiver; MIMO systems; polarimetric MIMO radar; antijamming performance; polarisation diversity; transmit array; receive array; oblique projection filter; output signal-to-interference-plus-noise ratio analysis; radar configuration; MIMO RADAR; SCATTERING ESTIMATION; RECEIVER;
D O I
10.1049/iet-rsn.2016.0648
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Controlling the polarisation states of the transmitter and the receiver enables improving the performance of radar systems, especially for mainlobe interference suppression applications. In this study, the authors consider the design of optimal polarisations at both of the radar transmitter and receiver for mainlobe interference suppression. They propose the polarimetric multiple-input-multiple-output (MIMO) radar which combines the advantages of MIMO systems with the advantages offered by optimally choosing the transmitter polarisation or the receiver polarisation to achieve a better anti-jamming performance. The polarisation diversity is employed in the transmit array and the receive array. The interferences can be suppressed by the oblique projection filter. Based on the output signal-to-interference-plus-noise ratio analysis, the optimal transmitter polarisation and the receiver polarisation can be obtained. Simulation results demonstrate that interference can be effectively suppressed with the radar configuration, and better interference suppression performance can be achieved with the optimal transmitter polarisation and receiver polarisation.
引用
收藏
页码:137 / 144
页数:8
相关论文
共 34 条
[1]  
Andrea C., 2010, IEEE T GEOSCI REMOTE, V48, P2049
[2]  
Anreddy V. R., 2006, P IEEE GLOB TEL C GL, P1
[3]  
Cao B, 2008, I C WIREL COMM NETW, P1893
[4]   Compact three-port orthogonally polarized MIMO antennas [J].
Chiu, Chi-Yuk ;
Yan, Jie-Bang ;
Murch, Ross D. .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2007, 6 :619-622
[5]   GLRT-based Detection Algorithm for Polarimetric MIMO Radar Against SIRV Clutter [J].
Cui, Guolong ;
Kong, Lingjiang ;
Yang, Xiaobo .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2012, 31 (03) :1033-1048
[6]  
Dadjadi F.A., 2002, IEEE T AERO ELEC SYS, V38, P38
[7]   Main-Lobe Jamming Suppression Method of using Spatial Polarization Characteristics of Antennas [J].
Dai, Huanyao ;
Wang, Xuesong ;
Li, Yongzhen ;
Liu, Yong ;
Xiao, Shunping .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2012, 48 (03) :2167-2179
[8]   SUBOPTIMUM ADAPTIVE POLARIZATION CANCELLERS FOR DUAL-POLARIZATION RADARS [J].
GHERARDELLI, M ;
GIULI, D ;
FOSSI, M .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1988, 135 (01) :60-72
[9]   Game theoretic design for polarimetric MIMO radar target detection [J].
Gogineni, Sandeep ;
Nehorai, Arye .
SIGNAL PROCESSING, 2012, 92 (05) :1281-1289
[10]   Polarimetric MIMO Radar With Distributed Antennas for Target Detection [J].
Gogineni, Sandeep ;
Nehorai, Arye .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (03) :1689-1697