On the Ramsey problem for multicolor bipartite graphs

被引:8
作者
Carnielli, WA [1 ]
Carmelo, ELM
机构
[1] State Univ Campinas, Dept Philosophy, Campinas, SP, Brazil
[2] State Univ Campinas, Ctr Log & Epistmol, Campinas, SP, Brazil
[3] State Univ Maringa, Dept Math, Maringa, Parana, Brazil
关键词
D O I
10.1006/aama.1998.0620
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given i,j positive integers, let K-i,K-j denote a bipartite complete graph and let R-r(m, n) be the smallest integer a such that for any r-coloring of the edges of K-a,K-a one can always find a monochromatic subgraph isomorphic to K-m,K-n. In other words, if a greater than or equal to R-r(m, n) then every matrix a x a with entries in {0, 1,..., r - 1} always contains a submatrix m x n or n x m whose entries are i, 0 less than or equal to i less than or equal to r - 1. We shall prove that R-2(m, n) less than or equal to 2(m)(n - 1) + 2(m-1) - 1, Which generalizes the previous results R-2(2, n) less than or equal to 4n - 3 and R-2(3, n) less than or equal to 8n - 5 due to Beineke and Schwenk. Moreover, we find a class of lower bounds based on properties of orthogonal Latin squares which establishes that lim(r --> infinity) R-r(2, 2)r(-2) = 1. (C) 1999 Academic Press.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 15 条
[1]   In memoriam: Paul Erdos 1913-1996 [J].
Baumgartner, JE .
BULLETIN OF SYMBOLIC LOGIC, 1997, 3 (01) :70-72
[2]  
Beineke L. W., 1975, P 5 BRIT COMB C U AB, P17
[3]  
Beth T., 1986, DESIGN THEORY
[4]  
Bollobas B., 1978, EXTREMAL GRAPH THEOR
[5]  
CARNIELLI WA, 1990, STUD APPL MATH, V82, P59
[6]   SOME RESULTS ON POLARIZED PARTITION RELATIONS OF HIGHER DIMENSION [J].
CARNIELLI, WA ;
DIPRISCO, CA .
MATHEMATICAL LOGIC QUARTERLY, 1993, 39 (04) :461-474
[7]   MULTICOLOR RAMSEY NUMBERS FOR COMPLETE BIPARTITE GRAPHS [J].
CHUNG, FRK ;
GRAHAM, RL .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1975, 18 (02) :164-169
[8]  
Furedi Z., 1996, Combin. Probab. Comput, V5, P29, DOI [10.1017/S0963548300001814, DOI 10.1017/S0963548300001814, 10.1017/S09635483000]
[9]  
Graham R.L., 1980, Ramsey Theory, V2nd
[10]  
Guy R.K., 1968, LECT NOTES MATH, V110, P129