Targeting bone microenvironments for treatment and early detection of cancer bone metastatic niches

被引:20
作者
Yang, Hongbin [1 ,2 ,3 ,4 ]
Yu, Zhenyan [4 ]
Ji, Shuaishuai [4 ]
Huo, Qiang [4 ]
Yan, Juanzhu [6 ]
Gao, Yue [3 ]
Niu, Yimin [1 ,5 ]
Xu, Ming [3 ]
Liu, Yang [2 ]
机构
[1] Southeast Univ, Sch Med, Zhongda Hosp, Dept Pharm, Nanjing 210009, Jiangsu, Peoples R China
[2] Nanjing Med Univ, Sch Pharm, Dept Pharmaceut, Nanjing 211166, Jiangsu, Peoples R China
[3] Jiangsu Prov Ctr Dis Control & Prevent, Dept Occupat Dis Prevent, Nanjing 210009, Jiangsu, Peoples R China
[4] Bengbu Med Coll, Sch Pharm, Bengbu 233030, Anhui, Peoples R China
[5] Southeast Univ, Dept Neurol, Zhongda Hosp, Sch Med, Nanjing 210009, Jiangsu, Peoples R China
[6] Univ N Carolina, Carolina Inst Nanomed, Carolina Ctr Canc Nanotechnol Excellence, Lab Nano & Translat Med, Chapel Hill, NC 27599 USA
基金
中国国家自然科学基金;
关键词
Bone microenvironments; Therapeutic strategies; Nanoprobes; Metastatic niche; Immunotherapy; BREAST-CANCER; OSTEOCLAST DIFFERENTIATION; NANOPARTICLES; DELIVERY; THERAPY; MARROW; ENHANCE; INFILTRATION; NANOCARRIERS; SURVEILLANCE;
D O I
10.1016/j.jconrel.2021.11.005
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Bone tissues are the main metastatic sites of many cancers, and bone metastasis is an important cause of death. When bone metastasis occurs, dynamic interactions between tumor cells and bone tissues promote changes in the tumor-bone microenvironments that are conducive to tumor growth and progression, which also promote several related diseases, including pathological fracture, bone pain, and hypercalcemia. Accordingly, it has obvious clinical benefits for improving the cure rate and reducing the occurrence of related diseases through targeting bone microenvironments for the treatment and early detection of cancer bone metastasis niches. In this review, we briefly analyzed the relationship between bone microstructures and tumor metastasis, as well as microenvironmental changes in osteoblasts, osteoclasts, immune cells, and extracellular and bone matrixes caused when metastatic tumor cells colonize bones. We also discuss novel designs in nanodrugs for inhibiting tumor proliferation and migration through targeting to tumor bone metastases and abnormal bone-microenvironment components. In addition, related researches on the early detection of bone and multi-organ metastases by nanoprobes are also introduced. And we look forward to providing some useful proposals and enlightenments on nanotechnology-based drug delivery and probes for the treatment and early detection of bone metastasis.
引用
收藏
页码:443 / 456
页数:14
相关论文
共 116 条
[1]   Impact of combination therapy with anti-PD-1 blockade and a STAT3 inhibitor on the tumor-infiltrating lymphocyte status [J].
Ashizawa, Tadashi ;
Iizuka, Akira ;
Maeda, Chie ;
Tanaka, Emiko ;
Kondou, Ryota ;
Miyata, Haruo ;
Sugino, Takashi ;
Kawata, Takuya ;
Deguchi, Shoichi ;
Mitsuya, Koichi ;
Hayashi, Nakamasa ;
Asai, Akira ;
Ito, Mamoru ;
Yamaguchi, Ken ;
Akiyama, Yasuto .
IMMUNOLOGY LETTERS, 2019, 216 :43-50
[2]   Implication of Prophetic Variables and their Impulsive Interplay in CA Prostate Patients Experiencing Osteo-Metastasis [J].
Ashraf, Muhammad A. B. ;
Zahid, Ayesha ;
Ashraf, Shazia ;
Waquar, Sulayman ;
Iqbal, Saima ;
Malik, Arif .
ANTI-CANCER AGENTS IN MEDICINAL CHEMISTRY, 2020, 20 (17) :2106-2113
[3]   Osteoclasts and tumor cells dual targeting nanoparticle to treat bone metastases of lung cancer [J].
Bai, Shao-bo ;
Liu, Dao-zhou ;
Cheng, Ying ;
Cui, Han ;
Liu, Miao ;
Cui, Min-xuan ;
Zhang, Bang-le ;
Mei, Qi-bing ;
Zhou, Si-yuan .
NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2019, 21
[4]   Next-generation in vivo optical imaging with short-wave infrared quantum dots [J].
Bruns, Oliver T. ;
Bischof, Thomas S. ;
Harris, Daniel K. ;
Franke, Daniel ;
Shi, Yanxiang ;
Riedemann, Lars ;
Bartelt, Alexander ;
Jaworski, Frank B. ;
Carr, Jessica A. ;
Rowlands, Christopher J. ;
Wilson, Mark W. B. ;
Chen, Ou ;
Wei, He ;
Hwang, Gyu Weon ;
Montana, Daniel M. ;
Coropceanu, Igor ;
Achorn, Odin B. ;
Kloepper, Jonas ;
Heeren, Joerg ;
So, Peter T. C. ;
Fukumura, Dai ;
Jensen, Klavs F. ;
Jain, Rakesh K. ;
Bawendi, Moungi G. .
NATURE BIOMEDICAL ENGINEERING, 2017, 1 (04)
[5]  
Buijs Jeroen T, 2012, Bonekey Rep, V1, P96, DOI 10.1038/bonekey.2012.96
[6]   SREBP1 siRNA enhance the docetaxel effect based on a bone-cancer dual-targeting biomimetic nanosystem against bone metastatic castration-resistant prostate cancer [J].
Chen, Jiyuan ;
Wu, Zhenjie ;
Ding, Weihong ;
Xiao, Chengwu ;
Zhang, Yu ;
Gao, Shen ;
Gao, Yuan ;
Cai, Weimin .
THERANOSTICS, 2020, 10 (04) :1619-1632
[7]   Synergistic Lysosomal Activatable Polymeric Nanoprobe Encapsulating pH Sensitive Imidazole Derivative for Tumor Diagnosis [J].
Chen, Xiaohong ;
Chen, Ziwen ;
Hu, Benhui ;
Cai, Pingqiang ;
Wang, Sa ;
Xiao, Shuzhang ;
Wu, Yun-Long ;
Chen, Xiaodong .
SMALL, 2018, 14 (09)
[8]   EDTA-Modified 17β-Estradiol-Laden Upconversion Nanocomposite for Bone-Targeted Hormone Replacement Therapy for Osteoporosis [J].
Chen, Xiaoting ;
Zhu, Xingjun ;
Hu, Yan ;
Yuan, Wei ;
Qiu, Xiaochen ;
Jiang, Tianyuan ;
Xia, Chao ;
Xiong, Liqin ;
Li, Fuyou ;
Gao, Yanhong .
THERANOSTICS, 2020, 10 (07) :3281-3292
[9]   Neutrophil-Based Drug Delivery Systems [J].
Chu, Dafeng ;
Dong, Xinyue ;
Shi, Xutong ;
Zhang, Canyang ;
Wang, Zhenjia .
ADVANCED MATERIALS, 2018, 30 (22)
[10]   Photosensitization Priming of Tumor Microenvironments Improves Delivery of Nanotherapeutics via Neutrophil Infiltration [J].
Chu, Dafeng ;
Dong, Xinyue ;
Zhao, Qi ;
Gu, Jingkai ;
Wang, Zhenjia .
ADVANCED MATERIALS, 2017, 29 (27)