Vanishing theorems on Hermitian manifolds

被引:86
作者
Alexandrov, B [1 ]
Ivanov, S [1 ]
机构
[1] Univ Sofia, Fac Math & Informat, Dept Geometry, BU-1126 Sofia, Bulgaria
关键词
Hermitian manifold; KT manifolds; rational surface; Dolbeault operator; Bismut connection; Weyl structure;
D O I
10.1016/S0926-2245(01)00044-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the vanishing of the Dolbeault cohomology groups on Hermitian manifolds with dd(c)-harmonic Kahler form and positive (1, 1)-part of the Ricci form of the Bismut connection This implies the vanishing of the Dolbeault cohomology groups on complex surfaces which admit a conformal class of Hermitian metrics, such that the Ricci tensor of the canonical Weyl structure is positive. As a corollary we obtain that any such surface must be rational with c(1)(2) > 0. As an application, the pth Dolbeault cohomology groups of a left-invariant complex structure compatible with bi-invariant metric on a compact even dimensional Lie group are computed.
引用
收藏
页码:251 / 265
页数:15
相关论文
共 24 条
[1]  
ALEXANDROV B, IC99156 ICTP
[2]  
[Anonymous], 1953, Portugal. Math.
[3]  
Barth W., 1984, COMPACT COMPLEX SURF
[4]  
Besse A L., 1987, EINSTEIN MANIFOLDS
[5]   A LOCAL INDEX THEOREM FOR NON KAHLER-MANIFOLDS [J].
BISMUT, JM .
MATHEMATISCHE ANNALEN, 1989, 284 (04) :681-699
[6]  
BOREL A, 1996, TOPOLOGICAL METHODS, P202
[7]   HOMOGENEOUS VECTOR BUNDLES [J].
BOTT, R .
ANNALS OF MATHEMATICS, 1957, 66 (02) :203-248
[8]   TWISTED MULTIPLETS AND NEW SUPERSYMMETRIC NON-LINEAR SIGMA-MODELS [J].
GATES, SJ ;
HULL, CM ;
ROCEK, M .
NUCLEAR PHYSICS B, 1984, 248 (01) :157-186
[9]  
Gauduchon P, 1997, B UNIONE MAT ITAL, V11B, P257
[10]  
GAUDUCHON P, 1977, CR ACAD SCI A MATH, V285, P387