Assessment of stacked unidirectional and bidirectional long short-term memory networks for electricity load forecasting

被引:59
|
作者
Atef, Sara [1 ]
Eltawil, Amr B. [1 ]
机构
[1] Egypt Japan Univ Sci & Technol Just, Ind Engn & Syst Management, Alexandria 21934, Egypt
关键词
Bidirectional; Long short-term memory; Deep learning; Electricity load forecasting; Energy management; Smart grids; ARTIFICIAL NEURAL-NETWORK; CONSUMPTION; PREDICTION; SYSTEMS; MODEL; PRICES;
D O I
10.1016/j.epsr.2020.106489
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electricity load forecasting has been a substantial problem in the electric power system management process. An accurate forecasting model is essential to avoid imprecise predictions that can negatively affect system efficiency, economy, and sustainability. Among several prediction techniques, deep learning methods, especially the Long Short-Term Memory (LSTM), have been shown to have a superior performance in predicting the electricity load consumption. However, the consequences of using these methods have not fully been explored in terms of the various hidden layer structures, the depth of the model architecture, and the impact of tuning the model hyperparameters. In this paper, a systematic experimental methodology has been conducted to investigate the impact of using deep-stacked unidirectional (Uni-LSTM) and bidirectional (Bi-LSTM) networks on predicting electricity load consumption. In particular, two stacked configurations, which include two and three LSTM layers, are compared with the single-layered LSTM for both types to show the significant importance of adding the stacked layers. Moreover, for each proposed configuration, a hyperparameter optimization tool has been implemented to obtain the best model. The results indicate that the deep-stacked LSTM layers have no significant improvement in the prediction accuracy; nevertheless, they consume almost twice the time of the single-layered models. Also, the Bi-LSTM networks outperform the Uni-LSTM networks by 76.25%, 75.49%, and 75.35% in terms of Root Mean Square Error (RMSE), with respect to one, two, and three-layer model configurations, respectively. Furthermore, regarding the prediction accuracy comparison over the total tested period, the optimized Bi-LSTM model outperforms both the optimized Uni-LSTM model by 75.98%, 89.1%, and 89.37%, and the Support Vector Regression (SVR) model by 82.54%, 92.59%, and 92.89% in terms of (RMSE), the Mean Average Percentage Error (MAPE), and Mean Absolute Errors (MAE).
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Long Short Term Memory Networks for Short-Term Electric Load Forecasting
    Narayan, Apurva
    Hipel, Keith W.
    2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 2573 - 2578
  • [2] Hybrid Long Short-Term Memory Wavelet Transform Models for Short-Term Electricity Load Forecasting
    Guenoukpati, Agbassou
    Agbessi, Akuete Pierre
    Salami, Adekunle Akim
    Bakpo, Yawo Amen
    ENERGIES, 2024, 17 (19)
  • [3] Optimized Deep Stacked Long Short-Term Memory Network for Long-Term Load Forecasting
    Farrag, Tamer Ahmed
    Elattar, Ehab E.
    IEEE ACCESS, 2021, 9 : 68511 - 68522
  • [4] Hybrid Short-term Load Forecasting Method Based on Empirical Wavelet Transform and Bidirectional Long Short-term Memory Neural Networks
    Zhang, Xiaoyu
    Kuenzel, Stefanie
    Colombo, Nicolo
    Watkins, Chris
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2022, 10 (05) : 1216 - 1228
  • [5] Hybrid Short-term Load Forecasting Method Based on Empirical Wavelet Transform and Bidirectional Long Short-term Memory Neural Networks
    Xiaoyu Zhang
    Stefanie Kuenzel
    Nicolo Colombo
    Chris Watkins
    JournalofModernPowerSystemsandCleanEnergy, 2022, 10 (05) : 1216 - 1228
  • [6] Short-term Load Forecasting with Distributed Long Short-Term Memory
    Dong, Yi
    Chen, Yang
    Zhao, Xingyu
    Huang, Xiaowei
    2023 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE, ISGT, 2023,
  • [7] Hybrid long short-term memory and bidirectional multichannel network cascaded with split convolution for short-term load forecasting
    Hasanat, Syed Muhammad
    Ullah, Irshad
    Aurangzeb, Khursheed
    Rizwan, Muhammad
    Alhussein, Musaed
    Anwar, Muhammad Shahid
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 147
  • [8] Short-Term Load Forecasting using A Long Short-Term Memory Network
    Liu, Chang
    Jin, Zhijian
    Gu, Jie
    Qiu, Caiming
    2017 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE EUROPE (ISGT-EUROPE), 2017,
  • [9] Short-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameters
    Ngoc Anh Nguyen
    Tien Dat Dang
    Elena Verdú
    Vijender Kumar Solanki
    Evolutionary Intelligence, 2023, 16 : 1729 - 1746
  • [10] Short-term forecasting electricity load by long short-term memory and reinforcement learning for optimization of hyper-parameters
    Nguyen, Ngoc Anh
    Dang, Tien Dat
    Verdu, Elena
    Solanki, Vijender Kumar
    EVOLUTIONARY INTELLIGENCE, 2023, 16 (05) : 1729 - 1746