Benchmark 3D: a version of the DDFV scheme with cell/vertex unknowns on general meshes

被引:4
作者
Andreianov, Boris [1 ]
Hubert, Florence [2 ]
Krell, Stella [3 ]
机构
[1] Univ Franche Comte, Phys Mol Lab, CNRS, UMR 6623, F-25030 Besancon, France
[2] Univ Aix Marseille 1, LATP, Marseille, France
[3] INRIA, Lille, France
来源
FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2 | 2011年 / 4卷
关键词
FINITE-VOLUME METHOD; DIFFUSION OPERATORS; APPROXIMATION;
D O I
10.1007/978-3-642-20671-9_91
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives numerical results for a 3D extension of the 2D DDFV scheme. Our scheme is of the same inspiration as the one called CeVe-DDFV ([9]), with a more straightforward dual mesh construction.We sketch the construction in which, starting from a given 3D mesh (which can be non conformal and have arbitrary polygonal faces), one defines a dual mesh and a diamond mesh, reconstructs a discrete gradient, and proves the discrete duality property. Details can be found in [1]. © Springer-Verlag Berlin Heidelberg 2011.
引用
收藏
页码:937 / +
页数:3
相关论文
共 17 条
[1]   DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC-PARABOLIC EQUATIONS [J].
Andreianov, B. ;
Bendahmane, M. ;
Karlsen, K. H. .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2010, 7 (01) :1-67
[2]  
ANDREIANOV B, 2011, 3D DDFV DISCRETIZATI, V1
[3]  
Andreianov B., 2008, FINITE VOLUMES COMPL, P161
[4]  
ANDREIANOV B, 2011, 3D DDFV DISCRETIZATI, V2
[5]   Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes [J].
Andreianov, Boris ;
Boyer, Franck ;
Hubert, Florence .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (01) :145-195
[6]  
[Anonymous], INT J FINITE VOLUMES
[7]  
BOYER F, 2008, FINITE VOLUMES COMPL, P735
[8]   FINITE VOLUME METHOD FOR 2D LINEAR AND NONLINEAR ELLIPTIC PROBLEMS WITH DISCONTINUITIES [J].
Boyer, Franck ;
Hubert, Florence .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (06) :3032-3070
[9]  
Coudière Y, 1999, RAIRO-MATH MODEL NUM, V33, P493
[10]  
Coudiere Y., 2009, 3D DISCRETE DUALITY