Benchmark 3D: a version of the DDFV scheme with cell/vertex unknowns on general meshes

被引:4
作者
Andreianov, Boris [1 ]
Hubert, Florence [2 ]
Krell, Stella [3 ]
机构
[1] Univ Franche Comte, Phys Mol Lab, CNRS, UMR 6623, F-25030 Besancon, France
[2] Univ Aix Marseille 1, LATP, Marseille, France
[3] INRIA, Lille, France
来源
FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2 | 2011年 / 4卷
关键词
FINITE-VOLUME METHOD; DIFFUSION OPERATORS; APPROXIMATION;
D O I
10.1007/978-3-642-20671-9_91
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives numerical results for a 3D extension of the 2D DDFV scheme. Our scheme is of the same inspiration as the one called CeVe-DDFV ([9]), with a more straightforward dual mesh construction.We sketch the construction in which, starting from a given 3D mesh (which can be non conformal and have arbitrary polygonal faces), one defines a dual mesh and a diamond mesh, reconstructs a discrete gradient, and proves the discrete duality property. Details can be found in [1]. © Springer-Verlag Berlin Heidelberg 2011.
引用
收藏
页码:937 / +
页数:3
相关论文
共 17 条
  • [1] DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC-PARABOLIC EQUATIONS
    Andreianov, B.
    Bendahmane, M.
    Karlsen, K. H.
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2010, 7 (01) : 1 - 67
  • [2] ANDREIANOV B, 2011, 3D DDFV DISCRETIZATI, V1
  • [3] Andreianov B., 2008, FINITE VOLUMES COMPL, P161
  • [4] ANDREIANOV B, 2011, 3D DDFV DISCRETIZATI, V2
  • [5] Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes
    Andreianov, Boris
    Boyer, Franck
    Hubert, Florence
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2007, 23 (01) : 145 - 195
  • [6] [Anonymous], INT J FINITE VOLUMES
  • [7] BOYER F, 2008, FINITE VOLUMES COMPL, P735
  • [8] FINITE VOLUME METHOD FOR 2D LINEAR AND NONLINEAR ELLIPTIC PROBLEMS WITH DISCONTINUITIES
    Boyer, Franck
    Hubert, Florence
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (06) : 3032 - 3070
  • [9] Coudière Y, 1999, RAIRO-MATH MODEL NUM, V33, P493
  • [10] Coudiere Y., 2009, 3D DISCRETE DUALITY