Exact behavior around isolated singularity for semilinear elliptic equations with a log-type nonlinearity

被引:15
作者
Ghergu, Marius [1 ]
Kim, Sunghan [2 ]
Shahgholian, Henrik [3 ]
机构
[1] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
[2] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[3] Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
基金
瑞典研究理事会; 新加坡国家研究基金会;
关键词
Singular solutions; asymptotic behavior; log-type nonlinearity;
D O I
10.1515/anona-2017-0261
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the semilinear elliptic equation -Delta u = u(alpha)vertical bar log u vertical bar(beta) in B-1 \ {0}, where B-1 subset of R-n, with n >= 3, n/n-2 < alpha <n+2/n-2 and -infinity < beta < infinity. Our main result establishes that the nonnegative solution u is an element of C-2(B-1 \ {0}) of the above equation either has a removable singularity at the origin or it behaves like u(x) = A(1 + o(1))vertical bar x vertical bar(-2/alpha-1)(log 1/vertical bar x vertical bar)(-beta/alpha-1) as x -> 0, with A = [(2/alpha-1)(1-beta)(n - 2 - 2/alpha-1)](1/alpha-1).
引用
收藏
页码:995 / 1003
页数:9
相关论文
共 8 条
[1]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[2]   Local Analysis of Solutions of Fractional Semi-Linear Elliptic Equations with Isolated Singularities [J].
Caffarelli, Luis ;
Jin, Tianling ;
Sire, Yannick ;
Xiong, Jingang .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 213 (01) :245-268
[3]  
Chen W., 2017, MAXIMUM PRINCIPLES F
[4]   GLOBAL AND LOCAL BEHAVIOR OF POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS [J].
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1981, 34 (04) :525-598
[5]   Asymptotic behavior of solutions to the σ k -Yamabe equation near isolated singularities [J].
Han, Zheng-Chao ;
Li, YanYan ;
Teixeira, Eduardo V. .
INVENTIONES MATHEMATICAE, 2010, 182 (03) :635-684
[6]   Refined asymptotics for constant scalar curvature metrics with isolated singularities [J].
Korevaar, N ;
Mazzeo, R ;
Pacard, F ;
Schoen, R .
INVENTIONES MATHEMATICAE, 1999, 135 (02) :233-272
[7]  
Li CM, 1996, INVENT MATH, V123, P221, DOI 10.1007/BF01232373
[8]   Conformally invariant fully nonlinear elliptic equations and isolated singularities [J].
Li, YY .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (02) :380-425