Compressed sensing and sparsity in photoacoustic tomography

被引:51
作者
Haltmeier, Markus [1 ]
Berer, Thomas [2 ]
Moon, Sunghwan [3 ]
Burgholzer, Peter [2 ,4 ]
机构
[1] Univ Innsbruck, Dept Math, Technikerstr 13, A-6020 Innsbruck, Austria
[2] Res Ctr Nondestruct Testing RECENDT, Altenberger Str 69, A-4040 Linz, Austria
[3] Ulsan Natl Inst Sci & Technol, Dept Math Sci, Ulsan 44919, South Korea
[4] Christian Doppler Lab Photoacoust Imaging & Laser, Altenberger Str 69, A-4040 Linz, Austria
基金
奥地利科学基金会; 新加坡国家研究基金会;
关键词
non-contact photoacoustic imaging; photoacoustic tomography; compressed sensing; sparsity; SIGNAL RECONSTRUCTION; INVERSION FORMULAS; INTERFEROMETER;
D O I
10.1088/2040-8978/18/11/114004
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Increasing the imaging speed is a central aim in photoacoustic tomography. This issue is especially important in the case of sequential scanning approaches as applied for most existing optical detection schemes. In this work we address this issue using techniques of compressed sensing. We demonstrate, that the number of measurements can significantly be reduced by allowing general linear measurements instead of point-wise pressure values. A main requirement in compressed sensing is the sparsity of the unknowns to be recovered. For that purpose, we develop the concept of sparsifying temporal transforms for three-dimensional photoacoustic tomography. We establish a two-stage algorithm that recovers the complete pressure signals in a first step and then apply a standard reconstruction algorithm such as back-projection. This yields a novel reconstruction method with much lower complexity than existing compressed sensing approaches for photoacoustic tomography. Reconstruction results for simulated and for experimental data verify that the proposed compressed sensing scheme allows for reducing the number of spatial measurements without reducing the spatial resolution.
引用
收藏
页数:12
相关论文
共 38 条
[1]  
[Anonymous], 2009, WAVELET TOUR SIGNAL
[2]   Biomedical photoacoustic imaging [J].
Beard, Paul .
INTERFACE FOCUS, 2011, 1 (04) :602-631
[3]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[4]   Multimodal noncontact photoacoustic and optical coherence tomography imaging using wavelength-division multiplexing [J].
Berer, Thomas ;
Leiss-Holzinger, Elisabeth ;
Hochreiner, Armin ;
Bauer-Marschallinger, Johannes ;
Buchsbaum, Andreas .
JOURNAL OF BIOMEDICAL OPTICS, 2015, 20 (04)
[5]   Remote photoacoustic imaging on solid material using a two-wave mixing interferometer [J].
Berer, Thomas ;
Hochreiner, Armin ;
Zamiri, Saeid ;
Burgholzer, Peter .
OPTICS LETTERS, 2010, 35 (24) :4151-4153
[6]   Combining geometry and combinatorics: a unified approach to sparse signal recovery [J].
Berinde, R. ;
Gilbert, A. C. ;
Indyk, P. ;
Karloff, H. ;
Strauss, M. J. .
2008 46TH ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, VOLS 1-3, 2008, :798-+
[7]   Temporal back-projection algorithms for photoacoustic tomography with integrating line detectors [J].
Burgholzer, P. ;
Bauer-Marschallinger, J. ;
Gruen, H. ;
Haltmeier, M. ;
Paltauf, G. .
INVERSE PROBLEMS, 2007, 23 (06) :S65-S80
[8]  
Burgholzer P, 2016, P SOC PHOTO-OPT INS, V9708
[9]   Sharp RIP bound for sparse signal and low-rank matrix recovery [J].
Cai, T. Tony ;
Zhang, Anru .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2013, 35 (01) :74-93
[10]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509