Takens-Bogdanov bifurcations of equilibria and periodic orbits in the Lorenz system

被引:27
作者
Algaba, A. [1 ]
Dominguez-Moreno, M. C. [1 ]
Merino, M. [1 ]
Rodriguez-Luis, A. J. [2 ]
机构
[1] Univ Huelva, Dept Matemat, Ctr Invest Fis Teor & Matemat FIMAT, Huelva 21071, Spain
[2] Univ Seville, Dept Matemat Aplicada 2, ES Ingenieros, Seville 41092, Spain
关键词
Takens-Bogdanov bifurcation; Periodic orbit; Ilomoclinic connection; Heteroclinic connection; Triple-zero degeneracy; INVARIANT ALGEBRAIC-SURFACES; HETEROCLINIC ORBITS; DYNAMICAL-SYSTEMS; HOMOCLINIC ORBITS; HOPF-BIFURCATION; CENTER MANIFOLDS; DEGENERATE HOPF; EXISTENCE; FAMILY; CHAOS;
D O I
10.1016/j.cnsns.2015.06.034
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study Takens-Bogdanov bifurcations of equilibria and periodic orbits in the classical Lorenz system, allowing the parameters to take any real value. First, by computing the corresponding normal form we determine where the Takens-Bogdanov bifurcation of equilibria is non-degenerate, namely of homoclinic or of heteroclinic type. The transition between these two types occurs by means of a triple-zero singularity. Moreover, we demonstrate that a degenerate homoclinic-type Takens-Bogdanov bifurcation of infinite codimension occurs. Secondly, taking advantage of the above analytical results, we carry out a numerical study of the Lorenz system. In this way, we find several kinds of degenerate homoclinic and heteroclinic connections as well as Takens-Bogdanov bifurcations of periodic orbits. The existence of these codimension-two degeneracies, that organize the symmetry-breaking, perioddoubling, saddle-node and torus bifurcations undergone by the corresponding periodic orbits, guarantees in some cases the presence of Shilnikov chaos. We also show the existence of a codimension-three homoclinic connection that together with the triple-zero degeneracy act as main organizing centers in the parameter space of the Lorenz system. Finally, we obtain interesting information on the bifurcation sets of the widely studied Chen and Lu systems, taking into account that they are, generically, particular cases of the Lorenz system, as can be proved with a linear scaling in time and state variables. We remark that the heteroclinic case of the Takens-Bogdanov bifurcation in the Lorenz system was found in the literature, in a region with negative parameters, in the study of a thermosolutal convection model and in the analysis of traveling-wave solutions of the Maxwell-Bloch equations. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:328 / 343
页数:16
相关论文
共 84 条
[1]   Plane Kolmogorov flows and Takens-Bogdanov bifurcation without parameters: The singly reversible case [J].
Afendikov, Andrei ;
Fiedler, Bernold ;
Liebscher, Stefan .
ASYMPTOTIC ANALYSIS, 2011, 72 (1-2) :31-76
[2]   Analysis of Hopf and Takens-Bogdanov bifurcations in a modified van der Pol-Duffing oscillator [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
Rodriguez-Luis, AJ .
NONLINEAR DYNAMICS, 1998, 16 (04) :369-404
[3]   A tame degenerate Hopf-pitchfork bifurcation in a modified van der Pol-Duffing oscillator [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
Rodríguez-Luis, AJ .
NONLINEAR DYNAMICS, 2000, 22 (03) :249-269
[4]   An exact homoclinic orbit and its connection with the Rossler system [J].
Algaba, A. ;
Freire, E. ;
Gamero, E. ;
Rodriguez-Luis, A. J. .
PHYSICS LETTERS A, 2015, 379 (16-17) :1114-1121
[5]   Analysis of the T-point-Hopf bifurcation in the Lorenz system [J].
Algaba, A. ;
Fernandez-Sanchez, F. ;
Merino, M. ;
Rodriguez-Luis, A. J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :676-691
[6]   On a codimension-three unfolding of the interaction of degenerate Hopf and pitchfork bifurcations [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
Rodríguez-Luis, AJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1333-1362
[7]   A three-parameter study of a degenerate case of the Hopf-pitchfork bifurcation [J].
Algaba, A ;
Freire, E ;
Gamero, E ;
Rodríguez-Luis, AJ .
NONLINEARITY, 1999, 12 (04) :1177-1206
[8]   Some results on Chua's equation near a triple-zero linear degeneracy [J].
Algaba, A ;
Merino, M ;
Freire, E ;
Gamero, E ;
Rodríguez-Luis, AJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (03) :583-608
[9]  
Algaba A, 1999, IEICE T FUND ELECTR, VE82A, P1722
[10]   Takens-Bogdanov bifurcations of periodic orbits and Arnold's tongues in a three-dimensional electronic model [J].
Algaba, A ;
Merino, M ;
Rodríguez-Luis, AJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (02) :513-531