Energy-conserving methods for the nonlinear Schrodinger equation

被引:58
作者
Barletti, L. [1 ]
Brugnano, L. [1 ]
Frasca Caccia, Gianluca [2 ]
Iavernaro, F. [3 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Florence, Italy
[2] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
[3] Univ Bari, Dipartimento Matemat, Bari, Italy
关键词
Hamiltonian partial differential equations; Nonlinear Schrodinger equation; Energy-conserving methods; Line integral methods; Hamiltonian Boundary Value methods; HBVMs; NUMERICAL-SOLUTION; SYMPLECTIC METHODS; IMPLICIT METHODS; GAUSS COLLOCATION; STEP METHODS; INTEGRATORS; IMPLEMENTATION; FAMILY; HBVMS;
D O I
10.1016/j.amc.2017.04.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we further develop recent results in the numerical solution of Hamiltonian partial differential equations (PDEs) (Brugnano et al., 2015), by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We shall use HBVMs for solving the nonlinear Schrodinger equation (NLSE), of interest in many applications. We show that the use of energy-conserving methods, able to conserve a discrete counterpart of the Hamiltonian functional, confers more robustness on the numerical solution of such a problem. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 58 条
[1]  
Ablowitz M. J., 1981, SIAM Studies in Applied Mathematics, V4, DOI 10.1137/1.9781611970883
[2]  
Agrawal G. P., 2001, NONLINEAR FIBER OPTI, V3rd
[3]  
[Anonymous], LECT NOTES
[4]  
[Anonymous], ARXIVQBIO0606008
[5]   Existence and stability of ground states for fully discrete approximations of the nonlinear Schrodinger equation [J].
Bambusi, Dario ;
Faou, Erwan ;
Grebert, Benoit .
NUMERISCHE MATHEMATIK, 2013, 123 (03) :461-492
[6]   Recent Advances in the Numerical Solution of Hamiltonian Partial Differential Equations [J].
Barletti, Luigi ;
Brugnano, Luigi ;
Frasca Caccia, Gianluca ;
Iavernaro, Felice .
NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776
[7]   Signal-noise interaction in nonlinear optical fibers: a hydrodynamic approach [J].
Barletti, Luigi ;
Secondini, Marco .
OPTICS EXPRESS, 2015, 23 (21) :27419-27433
[8]   ON THE HAMILTONIAN INTERPOLATION OF NEAR-TO-THE-IDENTITY SYMPLECTIC MAPPINGS WITH APPLICATION TO SYMPLECTIC INTEGRATION ALGORITHMS [J].
BENETTIN, G ;
GIORGILLI, A .
JOURNAL OF STATISTICAL PHYSICS, 1994, 74 (5-6) :1117-1143
[9]   Numerical methods for Hamiltonian PDEs [J].
Bridges, Thomas J. ;
Reich, Sebastian .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19) :5287-5320
[10]   Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity [J].
Bridges, TJ ;
Reich, S .
PHYSICS LETTERS A, 2001, 284 (4-5) :184-193