Prediction of chemo-response in serous ovarian cancer

被引:26
作者
Bosquet, Jesus Gonzalez [1 ]
Newtson, Andreea M. [1 ]
Chung, Rebecca K. [1 ]
Thiel, Kristina W. [1 ]
Ginader, Timothy [2 ,3 ]
Goodheart, Michael J. [1 ,2 ]
Leslie, Kimberly K. [1 ,2 ]
Smith, Brian J. [2 ,3 ]
机构
[1] Univ Iowa, Univ Iowa Hosp & Clin, Dept Obstet & Gynecol, 200 Hawkins Dr, Iowa City, IA 52242 USA
[2] Univ Iowa, Holden Comprehens Canc Ctr, Iowa City, IA 52242 USA
[3] Univ Iowa, Holden Comprehens Canc Ctr, Biostat, Iowa City, IA 52242 USA
基金
美国国家卫生研究院;
关键词
Ovarian cancer; Chemo-response; Prediction model; Data integration; Individualized treatment; PLATINUM-RESISTANT; CLINICAL-OUTCOMES; GENE SIGNATURE; CHEMOTHERAPY; SURVIVAL; CLASSIFICATION; BEVACIZUMAB; GUIDELINES; PROGNOSIS; DIAGNOSIS;
D O I
10.1186/s12943-016-0548-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Background: Nearly one-third of serous ovarian cancer (OVCA) patients will not respond to initial treatment with surgery and chemotherapy and die within one year of diagnosis. If patients who are unlikely to respond to current standard therapy can be identified up front, enhanced tumor analyses and treatment regimens could potentially be offered. Using the Cancer Genome Atlas (TCGA) serous OVCA database, we previously identified a robust molecular signature of 422-genes associated with chemo-response. Our objective was to test whether this signature is an accurate and sensitive predictor of chemo-response in serous OVCA. Methods: We first constructed prediction models to predict chemo-response using our previously described 422-gene signature that was associated with response to treatment in serous OVCA. Performance of all prediction models were measured with area under the curves (AUCs, a measure of the model's accuracy) and their respective confidence intervals (CIs). To optimize the prediction process, we determined which elements of the signature most contributed to chemo-response prediction. All prediction models were replicated and validated using six publicly available independent gene expression datasets. Results: The 422-gene signature prediction models predicted chemo-response with AUCs of similar to 70 %. Optimization of prediction models identified the 34 most important genes in chemo-response prediction. These 34-gene models had improved performance, with AUCs approaching 80 %. Both 422-gene and 34-gene prediction models were replicated and validated in six independent datasets. Conclusions: These prediction models serve as the foundation for the future development and implementation of a diagnostic tool to predict response to chemotherapy for serous OVCA patients.
引用
收藏
页数:15
相关论文
共 56 条
[1]   Ovarian cancer surgical resectability: Relative impact of disease, patient status, and surgeon [J].
Aletti, GD ;
Gostout, BS ;
Podratz, KC ;
Cliby, WA .
GYNECOLOGIC ONCOLOGY, 2006, 100 (01) :33-37
[2]  
[Anonymous], 2014, CANC FACTS FIG 2014
[3]  
Antoniu SA, 2010, IDRUGS, V13, P332
[4]   Integrated genomic analyses of ovarian carcinoma [J].
Bell, D. ;
Berchuck, A. ;
Birrer, M. ;
Chien, J. ;
Cramer, D. W. ;
Dao, F. ;
Dhir, R. ;
DiSaia, P. ;
Gabra, H. ;
Glenn, P. ;
Godwin, A. K. ;
Gross, J. ;
Hartmann, L. ;
Huang, M. ;
Huntsman, D. G. ;
Iacocca, M. ;
Imielinski, M. ;
Kalloger, S. ;
Karlan, B. Y. ;
Levine, D. A. ;
Mills, G. B. ;
Morrison, C. ;
Mutch, D. ;
Olvera, N. ;
Orsulic, S. ;
Park, K. ;
Petrelli, N. ;
Rabeno, B. ;
Rader, J. S. ;
Sikic, B. I. ;
Smith-McCune, K. ;
Sood, A. K. ;
Bowtell, D. ;
Penny, R. ;
Testa, J. R. ;
Chang, K. ;
Dinh, H. H. ;
Drummond, J. A. ;
Fowler, G. ;
Gunaratne, P. ;
Hawes, A. C. ;
Kovar, C. L. ;
Lewis, L. R. ;
Morgan, M. B. ;
Newsham, I. F. ;
Santibanez, J. ;
Reid, J. G. ;
Trevino, L. R. ;
Wu, Y. -Q. ;
Wang, M. .
NATURE, 2011, 474 (7353) :609-615
[5]   Angiogenic mRNA and microRNA Gene Expression Signature Predicts a Novel Subtype of Serous Ovarian Cancer [J].
Bentink, Stefan ;
Haibe-Kains, Benjamin ;
Risch, Thomas ;
Fan, Jian-Bing ;
Hirsch, Michelle S. ;
Holton, Kristina ;
Rubio, Renee ;
April, Craig ;
Chen, Jing ;
Wickham-Garcia, Eliza ;
Liu, Joyce ;
Culhane, Aedin ;
Drapkin, Ronny ;
Quackenbush, John ;
Matulonis, Ursula A. .
PLOS ONE, 2012, 7 (02)
[6]   Oncogenic pathway signatures in human cancers as a guide to targeted therapies [J].
Bild, AH ;
Yao, G ;
Chang, JT ;
Wang, QL ;
Potti, A ;
Chasse, D ;
Joshi, MB ;
Harpole, D ;
Lancaster, JM ;
Berchuck, A ;
Olson, JA ;
Marks, JR ;
Dressman, HK ;
West, M ;
Nevins, JR .
NATURE, 2006, 439 (7074) :353-357
[7]   Differential Platelet Levels Affect Response to Taxane-Based Therapy in Ovarian Cancer [J].
Bottsford-Miller, Justin ;
Choi, Hyun-Jin ;
Dalton, Heather J. ;
Stone, Rebecca L. ;
Cho, Min Soon ;
Haemmerle, Monika ;
Nick, Alpa M. ;
Pradeep, Sunila ;
Zand, Behrouz ;
Previs, Rebecca A. ;
Pecot, Chad V. ;
Crane, Erin King ;
Hu, Wei ;
Lutgendorf, Susan K. ;
Afshar-Kharghan, Vahid ;
Sood, Anil K. .
CLINICAL CANCER RESEARCH, 2015, 21 (03) :602-610
[8]   Incorporation of Bevacizumab in the Primary Treatment of Ovarian Cancer [J].
Burger, Robert A. ;
Brady, Mark F. ;
Bookman, Michael A. ;
Fleming, Gini F. ;
Monk, Bradley J. ;
Huang, Helen ;
Mannel, Robert S. ;
Homesley, Howard D. ;
Fowler, Jeffrey ;
Greer, Benjamin E. ;
Boente, Matthew ;
Birrer, Michael J. ;
Liang, Sharon X. .
NEW ENGLAND JOURNAL OF MEDICINE, 2011, 365 (26) :2473-2483
[9]   Cancer of the ovary [J].
Cannistra, SA .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 351 (24) :2519-2529
[10]   Random forests for genomic data analysis [J].
Chen, Xi ;
Ishwaran, Hemant .
GENOMICS, 2012, 99 (06) :323-329