The inverse 1-maxian problem with edge length modification

被引:38
作者
Gassner, Elisabeth [1 ]
机构
[1] Graz Univ Technol, Dept Optimizat & Discrete Math, A-8010 Graz, Austria
关键词
obnoxious location; maxian; inverse problem; omplexity; tree;
D O I
10.1007/s10878-007-9098-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the problem of modifying the lengths of the edges of a graph at minimum cost such that a prespecified vertex becomes a 1-maxian with respect to the new edge lengths. The inverse 1-maxian problem with edge length modification is shown to be strongly NP-hard even on series-parallel graphs. Moreover, a transformation of the inverse 1-maxian problem with edge length modification on a tree to a minimum cost circulation problem is given which solves the original problem in O(n log n).
引用
收藏
页码:50 / 67
页数:18
相关论文
共 17 条
  • [1] Ahuja RK, 1993, NETWORK FLOWS THEORY
  • [2] MINIMUM COST FLOW ALGORITHMS FOR SERIES-PARALLEL NETWORKS
    BEIN, WW
    BRUCKER, P
    TAMIR, A
    [J]. DISCRETE APPLIED MATHEMATICS, 1985, 10 (02) : 117 - 124
  • [3] IMPROVING THE LOCATION OF MINIMAX FACILITIES THROUGH NETWORK MODIFICATION
    BERMAN, O
    INGCO, DI
    ODONI, A
    [J]. NETWORKS, 1994, 24 (01) : 31 - 41
  • [4] Berman O., 1992, Annals of Operations Research, V40, P1, DOI 10.1007/BF02060467
  • [5] FINDING THE MINIMUM-COST MAXIMUM FLOW IN A SERIES-PARALLEL NETWORK
    BOOTH, H
    TARJAN, RE
    [J]. JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1993, 15 (03): : 416 - 446
  • [6] Burkard R. E., 2004, Discret. Optim, V1, P23, DOI DOI 10.1016/J.DISOPT.2004.03.003
  • [7] A linear time algorithm for the reverse 1-median problem on a cycle
    Burkard, Rainer E.
    Gassner, Elisabeth
    Hatzl, Johannes
    [J]. NETWORKS, 2006, 48 (01) : 16 - 23
  • [8] BURKARD RE, 2007, IN PRESS DISCRET APP
  • [9] Garey MR, 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
  • [10] Goldman A. J., 1971, Transportation Science, V5, P212, DOI 10.1287/trsc.5.2.212