The inverse 1-maxian problem with edge length modification

被引:38
作者
Gassner, Elisabeth [1 ]
机构
[1] Graz Univ Technol, Dept Optimizat & Discrete Math, A-8010 Graz, Austria
关键词
obnoxious location; maxian; inverse problem; omplexity; tree;
D O I
10.1007/s10878-007-9098-9
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider the problem of modifying the lengths of the edges of a graph at minimum cost such that a prespecified vertex becomes a 1-maxian with respect to the new edge lengths. The inverse 1-maxian problem with edge length modification is shown to be strongly NP-hard even on series-parallel graphs. Moreover, a transformation of the inverse 1-maxian problem with edge length modification on a tree to a minimum cost circulation problem is given which solves the original problem in O(n log n).
引用
收藏
页码:50 / 67
页数:18
相关论文
共 17 条
[1]  
Ahuja RK, 1993, NETWORK FLOWS THEORY
[2]   MINIMUM COST FLOW ALGORITHMS FOR SERIES-PARALLEL NETWORKS [J].
BEIN, WW ;
BRUCKER, P ;
TAMIR, A .
DISCRETE APPLIED MATHEMATICS, 1985, 10 (02) :117-124
[3]   IMPROVING THE LOCATION OF MINIMAX FACILITIES THROUGH NETWORK MODIFICATION [J].
BERMAN, O ;
INGCO, DI ;
ODONI, A .
NETWORKS, 1994, 24 (01) :31-41
[4]  
Berman O., 1992, Annals of Operations Research, V40, P1, DOI 10.1007/BF02060467
[5]   FINDING THE MINIMUM-COST MAXIMUM FLOW IN A SERIES-PARALLEL NETWORK [J].
BOOTH, H ;
TARJAN, RE .
JOURNAL OF ALGORITHMS-COGNITION INFORMATICS AND LOGIC, 1993, 15 (03) :416-446
[6]  
Burkard R. E., 2004, Discret. Optim, V1, P23, DOI DOI 10.1016/J.DISOPT.2004.03.003
[7]   A linear time algorithm for the reverse 1-median problem on a cycle [J].
Burkard, Rainer E. ;
Gassner, Elisabeth ;
Hatzl, Johannes .
NETWORKS, 2006, 48 (01) :16-23
[8]  
BURKARD RE, 2007, IN PRESS DISCRET APP
[9]  
Garey MR, 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[10]  
Goldman A. J., 1971, Transportation Science, V5, P212, DOI 10.1287/trsc.5.2.212