Learning Shape Priors for Robust Cardiac MR Segmentation from Multi-view Images

被引:39
作者
Chen, Chen [1 ]
Biffi, Carlo [1 ]
Tarroni, Giacomo [1 ]
Petersen, Steffen [2 ]
Bai, Wenjia [3 ,4 ]
Rueckert, Daniel [1 ]
机构
[1] Imperial Coll London, Biomed Image Anal Grp, London, England
[2] Queen Mary Univ London, NIHR Barts BRC, London, England
[3] Imperial Coll London, Data Sci Inst, London, England
[4] Imperial Coll London, Dept Med, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II | 2019年 / 11765卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1007/978-3-030-32245-8_58
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cardiac MR image segmentation is essential for the morphological and functional analysis of the heart. Inspired by how experienced clinicians assess the cardiac morphology and function across multiple standard views (i.e. long- and short-axis views), we propose a novel approach which learns anatomical shape priors across different 2D standard views and leverages these priors to segment the left ventricular (LV) myocardium from short-axis MR image stacks. The proposed segmentation method has the advantage of being a 2D network but at the same time incorporates spatial context from multiple, complementary views that span a 3D space. Our method achieves accurate and robust segmentation of the myocardium across different short-axis slices (from apex to base), outperforming baseline models (e.g. 2D U-Net, 3D U-Net) while achieving higher data efficiency. Compared to the 2D U-Net, the proposed method reduces the mean Hausdorff distance (mm) from 3.24 to 2.49 on the apical slices, from 2.34 to 2.09 on the middle slices and from 3.62 to 2.76 on the basal slices on the test set, when only 10% of the training data was used.
引用
收藏
页码:523 / 531
页数:9
相关论文
共 15 条
[1]   Automated cardiovascular magnetic resonance image analysis with fully convolutional networks [J].
Bai, Wenjia ;
Sinclair, Matthew ;
Tarroni, Giacomo ;
Oktay, Ozan ;
Rajchl, Martin ;
Vaillant, Ghislain ;
Lee, Aaron M. ;
Aung, Nay ;
Lukaschuk, Elena ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Carapella, Valentina ;
Kim, Young Jin ;
Suzuki, Hideaki ;
Kainz, Bernhard ;
Matthews, Paul M. ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Glocker, Ben ;
Rueckert, Daniel .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
[2]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[3]   Multitask learning [J].
Caruana, R .
MACHINE LEARNING, 1997, 28 (01) :41-75
[4]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[5]   Automatic 3D Bi-Ventricular Segmentation of Cardiac Images by a Shape-Refined Multi-Task Deep Learning Approach [J].
Duan, Jinming ;
Bello, Ghalib ;
Schlemper, Jo ;
Bai, Wenjia ;
Dawes, Timothy J. W. ;
Biffi, Carlo ;
de Marvao, Antonio ;
Doumou, Georgia ;
O'Regan, Declan P. ;
Rueckert, Daniel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (09) :2151-2164
[6]   Automatic Cardiac Disease Assessment on cine-MRI via Time-Series Segmentation and Domain Specific Features [J].
Isensee, Fabian ;
Jaeger, Paul F. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Maier-Hein, Klaus H. .
STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 :120-129
[7]   Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers [J].
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy .
MEDICAL IMAGE ANALYSIS, 2019, 51 :21-45
[8]  
Kohl S., 2018, P ADV NEUR INF PROC, V31, P6965
[9]   Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation [J].
Oktay, Ozan ;
Ferrante, Enzo ;
Kamnitsas, Konstantinos ;
Heinrich, Mattias ;
Bai, Wenjia ;
Caballero, Jose ;
Cook, Stuart A. ;
de Marvao, Antonio ;
Dawes, Timothy ;
O'Regan, Declan P. ;
Kainz, Bernhard ;
Glocker, Ben ;
Rueckert, Daniel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (02) :384-395
[10]   Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort [J].
Petersen, Steffen E. ;
Aung, Nay ;
Sanghvi, Mihir M. ;
Zemrak, Filip ;
Fung, Kenneth ;
Paiva, Jose Miguel ;
Francis, Jane M. ;
Khanji, Mohammed Y. ;
Lukaschuk, Elena ;
Lee, Aaron M. ;
Carapella, Valentina ;
Kim, Young Jin ;
Leeson, Paul ;
Piechnik, Stefan K. ;
Neubauer, Stefan .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2017, 19