Antiferromagnetic opto-spintronics

被引:430
作者
Nemec, P. [1 ]
Fiebig, M. [2 ]
Kampfrath, T. [3 ,4 ]
Kimel, A. V. [5 ,6 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[2] Swiss Fed Inst Technol, Dept Mat, Zurich, Switzerland
[3] Fritz Haber Inst Max Planck Soc, Dept Phys Chem, Berlin, Germany
[4] Free Univ Berlin, Dept Phys, Berlin, Germany
[5] Radboud Univ Nijmegen, Inst Mol & Mat, Nijmegen, Netherlands
[6] Moscow Technol Univ, MIREA, Moscow, Russia
基金
欧洲研究理事会;
关键词
2ND-HARMONIC GENERATION; SPIN DYNAMICS; OPTICAL MANIPULATION; WEAK FERROMAGNETISM; THIN-FILMS; MAGNETIZATION; MAGNETISM; PULSES; POLARIZATION; SPECTROSCOPY;
D O I
10.1038/s41567-018-0051-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Control and detection of spin order in ferromagnetic materials is the main principle enabling magnetic information to be stored and read in current technologies. Antiferromagnetic materials, on the other hand, are far less utilized, despite having some appealing features. For instance, the absence of net magnetization and stray fields eliminates crosstalk between neighbouring devices, and the absence of a primary macroscopic magnetization makes spin manipulation in antiferromagnets inherently faster than in ferromagnets. However, control of spins in antiferromagnets requires exceedingly high magnetic fields, and antiferromagnetic order cannot be detected with conventional magnetometry. Here we provide an overview and illustrative examples of how electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets. We also discuss possible research directions that are anticipated to be among the main topics defining the future of this rapidly developing field.
引用
收藏
页码:229 / 241
页数:13
相关论文
共 107 条
[1]   NONLINEAR OPTICAL FREQUENCY POLARIZATION IN DIELECTRIC [J].
ADLER, E .
PHYSICAL REVIEW, 1964, 134 (3A) :A728-+
[2]   Control of the Ultrafast Photoinduced Magnetization across the Morin Transition in DyFeO3 [J].
Afanasiev, D. ;
Ivanov, B. A. ;
Kirilyuk, A. ;
Rasing, Th. ;
Pisarev, R. V. ;
Kimel, A. V. .
PHYSICAL REVIEW LETTERS, 2016, 116 (09)
[3]  
Andreev A. F., 1980, Soviet Physics - Uspekhi, V23, P21, DOI 10.1070/PU1980v023n01ABEH004859
[4]  
Baierl S, 2016, NAT PHOTONICS, V10, P715, DOI [10.1038/nphoton.2016.181, 10.1038/NPHOTON.2016.181]
[5]   Antiferromagnetic spintronics [J].
Baltz, V. ;
Manchon, A. ;
Tsoi, M. ;
Moriyama, T. ;
Ono, T. ;
Tserkovnyak, Y. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[6]  
Batignani G, 2015, NAT PHOTONICS, V9, P506, DOI [10.1038/nphoton.2015.121, 10.1038/NPHOTON.2015.121]
[7]   Quantum theory of the inverse Faraday effect [J].
Battiato, M. ;
Barbalinardo, G. ;
Oppeneer, P. M. .
PHYSICAL REVIEW B, 2014, 89 (01)
[8]   Ultrafast spin dynamics in ferromagnetic nickel [J].
Beaurepaire, E ;
Merle, JC ;
Daunois, A ;
Bigot, JY .
PHYSICAL REVIEW LETTERS, 1996, 76 (22) :4250-4253
[9]   Identifying growth mechanisms for laser-induced magnetization in FeRh [J].
Bergman, B ;
Ju, GP ;
Hohlfeld, J ;
van de Veerdonk, RJM ;
Kim, JY ;
Wu, XW ;
Weller, D ;
Koopmans, B .
PHYSICAL REVIEW B, 2006, 73 (06)
[10]   Macrospin dynamics in antiferromagnets triggered by sub-20 femtosecond injection of nanomagnons [J].
Bossini, D. ;
Dal Conte, S. ;
Hashimoto, Y. ;
Secchi, A. ;
Pisarev, R. V. ;
Rasing, Th. ;
Cerullo, G. ;
Kimel, A. V. .
NATURE COMMUNICATIONS, 2016, 7