New dissipated energies for the thin fluid film equation

被引:15
作者
Laugesen, RS [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
thin fluid film; lubrication approximation; energy; entropy; pinch-off; film rupture;
D O I
10.3934/cpaa.2005.4.613
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The thin fluid film evolution h(t) = -(h(n)h(xxx)), is known to conserve the fluid volume integral h dx and to dissipate the "energies" integral h(1.5-n) dx and f h(x)(2) dx. We extend this last result by showing the energy integral h(p)h(x)(2) dx is dissipated for some values of p < 0, when 1/2 < n < 3. For example when n = 1, the Hele-Shaw equation h(t) = -(hh(xxx))(x) dissipates integral h(-1/2)h(x)(2) dx.
引用
收藏
页码:613 / 634
页数:22
相关论文
共 23 条
[1]   Stable and unstable singularities in the unforced Hele-Shaw cell [J].
Almgren, R ;
Bertozzi, A ;
Brenner, MP .
PHYSICS OF FLUIDS, 1996, 8 (06) :1356-1370
[2]   Doubly nonlinear thin-film equations in one space dimension [J].
Ansini, L ;
Giacomelli, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 173 (01) :89-131
[3]  
Auchmuty G, 1998, SIAM REV, V40, P710
[4]   NONNEGATIVE SOLUTIONS OF A 4TH-ORDER NONLINEAR DEGENERATE PARABOLIC EQUATION [J].
BERETTA, E ;
BERTSCH, M ;
DALPASSO, R .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 129 (02) :175-200
[5]  
Bernis F, 1996, CR ACAD SCI I-MATH, V322, P1169
[6]   HIGHER-ORDER NONLINEAR DEGENERATE PARABOLIC EQUATIONS [J].
BERNIS, F ;
FRIEDMAN, A .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1990, 83 (01) :179-206
[7]  
BERNIS F., 1996, Adv. Differential Equations, V1, P337
[8]  
BERNIS F, 1996, NONLINEAR PROBLEMS A
[9]  
Bertozzi AL, 1996, COMMUN PUR APPL MATH, V49, P85, DOI 10.1002/(SICI)1097-0312(199602)49:2<85::AID-CPA1>3.0.CO
[10]  
2-2