Online Training of Discriminative Parameter for Object Tracking-by-Detection in a Video

被引:1
|
作者
Sharma, Vijay Kumar [1 ]
Acharya, Bibhudendra [1 ]
Mahapatra, K. K. [2 ]
机构
[1] Natl Inst Technol, Raipur 492010, CG, India
[2] Natl Inst Technol, Rourkela 769008, Odisha, India
来源
SOFT COMPUTING IN DATA ANALYTICS, SCDA 2018 | 2019年 / 758卷
关键词
Visual object tracking; Computer vision; HCI; SVM;
D O I
10.1007/978-981-13-0514-6_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this chapter, an online training algorithm to update a discriminative parameter vector is proposed. The initial discriminative parameter is obtained by training an SVM in the first video frame only. The positive example for SVM training is the initial target object, while the negative examples are cropped at some distance away from the target object. In the successive video frames, the parameter vector is updated based on the similarity score between the parameter vector and the vector corresponding to tracked object. The similarity score is measured using a Gaussian kernel. The learned parameter is used to construct a likelihood model. Using particle filter framework, a number of target candidates are cropped. The tracked object in each successive frame is the target candidate corresponding to the highest likelihood value.
引用
收藏
页码:215 / 223
页数:9
相关论文
共 50 条
  • [1] New technique for online object tracking-by-detection in video
    Azab, Maha M.
    Shedeed, Howida A.
    Hussein, Ashraf S.
    IET IMAGE PROCESSING, 2014, 8 (12) : 794 - 803
  • [2] Object Tracking-by-Detection under Cluttered Environments Based on a Discriminative Approach
    Luo, Ren C.
    Kao, Ching C.
    2011 IEEE INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2011,
  • [3] Online Background Discriminative Learning for Satellite Video Object Tracking
    Zhong, Yanfei
    Fang, Xueting
    Shu, Meng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [4] ROBUST ONLINE FACE TRACKING-BY-DETECTION
    Comaschi, Francesco
    Stuijk, Sander
    Basten, Twan
    Corporaal, Henk
    2016 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO (ICME), 2016,
  • [5] Object Tracking by Combining Tracking-by-Detection and Marginal Particle Filter
    Maras, Bahri
    Arica, Nafiz
    Ertuzun, Aysin Baytan
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1029 - 1032
  • [6] Efficient Online Tracking-by-Detection With Kalman Filter
    Chen, Siyuan
    Shao, Chenhui
    IEEE ACCESS, 2021, 9 : 147570 - 147578
  • [7] Online multiple people tracking-by-detection in crowded scenes
    Rahmatian, Sahar
    Safabakhsh, Reza
    2014 7TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2014, : 337 - 342
  • [8] Discriminative local collaborative representation for online object tracking
    Chen, Si
    Li, Shaozi
    Ji, Rongrong
    Yan, Yan
    Zhu, Shunzhi
    KNOWLEDGE-BASED SYSTEMS, 2016, 100 : 13 - 24
  • [9] Discriminative Sparse Representation for Online Visual Object Tracking
    Bai, Tianxiang
    Li, Y. F.
    Zhou, Xiaolong
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO 2012), 2012,
  • [10] Online discriminative dictionary learning for robust object tracking
    Zhou, Tao
    Liu, Fanghui
    Bhaskar, Harish
    Yang, Jie
    Zhang, Huanlong
    Cai, Ping
    NEUROCOMPUTING, 2018, 275 : 1801 - 1812