High-entropy (HfTaTiNbZr)C and (HfTaTiNbMo)C carbides fabricated through reactive high-energy ball milling and spark plasma sintering

被引:111
作者
Moskovskikh, D. O. [1 ]
Vorotilo, S. [1 ]
Sedegov, A. S. [1 ]
Kuskov, K., V [1 ]
Bardasova, K., V [1 ]
Kiryukhantsev-korneev, Ph, V [1 ]
Zhukovskyi, M. [2 ]
Mukasyan, A. S. [3 ]
机构
[1] Natl Univ Sci & Technol MISiS, Moscow 119049, Russia
[2] Univ Notre Dame, Notre Dame Integrated Imaging Facil, Notre Dame, IN 46556 USA
[3] Univ Notre Dame, Dept Chem & Biomol Engn, Notre Dame, IN 46556 USA
基金
俄罗斯科学基金会;
关键词
High-entropy ceramic; Carbides; High-energy ball milling; Mechanochemical synthesis; Spark plasma sintering; MECHANICAL-PROPERTIES; DIFFUSION; CONDUCTIVITY; CERAMICS;
D O I
10.1016/j.ceramint.2020.04.230
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Powders of high-entropy Hf0.2Ta0.2Ti0.2Nb0.2Zr0.2C (HECZr) and Hf0.2Ta0.2Ti0.2Nb0.2Mo0.2C (HECMo) carbides were fabricated through the reactive high-energy ball milling (R-HEBM) of metal and graphite particles. It was found that 60 min of R-HEBM is adequate to achieve a full conversion of the initial precursors into a FCC solid solution for both compositions. The HECZr powder possesses a unimodal particle size distribution (40% d <= 1 mu m, 95% d <= 10 mu m), and the HEC(Zr )powder features a bimodal distribution with a slightly larger particle size overall (30% d <= 1 mu m, 80% d <= 10 mu m). Bulk high-entropy ceramics with a minor presence of an oxide phase were fabricated through the spark plasma sintering of these high-entropy powders at 2000 degrees C with a 10 min dwelling time. The HECZr ceramics possess a relative density of up to 94.8%, hardness of 25.7 +/- 3.5 GPa, Young's modulus of 473 +/- 37 GPa, and thermal conductivity of 5.6 +/- 0.1 W/m.K. HECMo ceramics with a relative density of up to 93.8%, hardness of 23.8 +/- 2.7 GPa, Young's modulus of 544 +/- 48 GPa, and thermal conductivity of 5.9 +/- 0.2 W/m.K were also fabricated. A comparison of the properties of the HECs produced in this study and those previously reported is also provided.
引用
收藏
页码:19008 / 19014
页数:7
相关论文
共 39 条
[1]  
[Anonymous], P 2017 TMS ANN M EXH
[2]  
[Anonymous], ULTRAHIGH TEMP CERAM
[3]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[4]   Colossal dielectric constant in high entropy oxides [J].
Berardan, David ;
Franger, Sylvain ;
Dragoe, Diana ;
Meena, Arun Kumar ;
Dragoe, Nita .
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2016, 10 (04) :328-333
[5]   Processing and Properties of High-Entropy Ultra-High Temperature Carbides [J].
Castle, Elinor ;
Csanadi, Tamas ;
Grasso, Salvatore ;
Dusza, Jan ;
Reece, Michael .
SCIENTIFIC REPORTS, 2018, 8
[6]   High porosity and low thermal conductivity high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C [J].
Chen, Heng ;
Xiang, Huimin ;
Dai, Fu-Zhi ;
Liu, Jiachen ;
Lei, Yiming ;
Zhang, Jie ;
Zhou, Yanchun .
JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2019, 35 (08) :1700-1705
[7]   Low temperature synthesis of an equiatomic (TiZrHfVNb)C5 high entropy carbide by a mechanically-induced carbon diffusion route [J].
Chicardi, E. ;
Garcia-Garrido, C. ;
Gotor, F. J. .
CERAMICS INTERNATIONAL, 2019, 45 (17) :21858-21863
[8]   Interdiffusion in the FCC-structured Al-Co-Cr-Fe-Ni high entropy alloys: Experimental studies and numerical simulations [J].
Dabrowa, Juliusz ;
Kucza, Witold ;
Cieslak, Grzegorz ;
Kulik, Tadeusz ;
Danielewski, Marek ;
Yeh, Jien-Wei .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 674 :455-462
[9]   Microstructure of (Hf-Ta-Zr-Nb)C high-entropy carbide at micro and nano/atomic level [J].
Dusza, Jan ;
Svec, Peter ;
Girman, Vladimir ;
Sedlak, Richard ;
Castle, Elinor G. ;
Csanadi, Tamas ;
Kovalcikova, Alexandra ;
Reece, Michael J. .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2018, 38 (12) :4303-4307
[10]   Hardness of cubic solid solutions [J].
Gao, Faming .
SCIENTIFIC REPORTS, 2017, 7