AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation

被引:2
|
作者
Varna, Fevzi Tugrul [1 ]
Husbands, Phil [1 ]
机构
[1] Univ Sussex, Dept Informat, Brighton, E Sussex, England
来源
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021) | 2021年
关键词
particle swarm optimisation; swarm intelligence;
D O I
10.1109/SSCI50451.2021.9660149
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper introduces a new particle swarm optimisation variant: the altruistic heterogeneous particle swarm optimisation algorithm (AHPSO). The algorithm conceptualises particles as energy-driven agents with bio-inspired altruistic behaviour. In our approach, particles possess a current energy level and an activation threshold and are in one of two possible states (active or inactive) depending on their energy levels at time tau. The idea of altruism is used to form lending-borrowing relationships among particles to change an agent's state from inactive to active, and the main search mechanism exploits this idea. Diversity in the swarm, which prevent premature convergence, is maintained via agent states and the level of altruistic behaviour particles exhibit. The performance of AHPSO was compared with 11 metaheuristics and 12 state-of-the-art PSO variants using the CEC'17 and CEC'05 test suites at 30 and 50 dimensions. The AHPSO algorithm outperformed all 23 comparison algorithms on both benchmark test suites at both 30 and 50 dimensions.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Continuous function optimisation using a hybrid split particle swarm algorithm
    Oliveira, PBD
    INTELLIGENT CONTROL SYSTEMS AND SIGNAL PROCESSING 2003, 2003, : 81 - 85
  • [32] A particle swarm optimisation algorithm with interactive swarms for tracking multiple targets
    Thida, Myo
    Eng, How-Lung
    Monekosso, Dorothy N.
    Remagnino, Paolo
    APPLIED SOFT COMPUTING, 2013, 13 (06) : 3106 - 3117
  • [33] An optimal rough fuzzy clustering algorithm using particle swarm optimisation
    Anuradha, J.
    Tripathy, B. K.
    INTERNATIONAL JOURNAL OF DATA MINING MODELLING AND MANAGEMENT, 2015, 7 (04) : 257 - 275
  • [34] Stochastic configuration networks with particle swarm optimisation search
    Felicetti, Matthew J.
    Wang, Dianhui
    INFORMATION SCIENCES, 2024, 677
  • [35] A novel particle swarm algorithm for multi-objective optimisation problem
    Zhang, Jiande
    Huang, Chenrong
    Xu, Jinbao
    Lu, Jingui
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2013, 18 (04) : 380 - 386
  • [36] Wireless sensor networks routing algorithm based on particle swarm optimisation
    Yang, Junhan
    INTERNATIONAL JOURNAL OF INTERNET PROTOCOL TECHNOLOGY, 2018, 11 (03) : 159 - 164
  • [37] Cognitive Bare Bones Particle Swarm Optimisation with Jumps
    al-Rifaie, Mohammad Majid
    Blackwell, Tim
    INTERNATIONAL JOURNAL OF SWARM INTELLIGENCE RESEARCH, 2016, 7 (01) : 1 - 31
  • [38] Surrogate-based adaptive particle swarm optimisation
    Zhang L.
    Jie J.
    Zheng H.
    Wu X.
    Dai S.
    International Journal of Wireless and Mobile Computing, 2019, 17 (02) : 187 - 195
  • [39] Parameter settings in particle swarm optimisation algorithms: a survey
    Li, Jing
    Cheng, Shi
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2022, 16 (02) : 164 - 182
  • [40] Evolving the update strategy of the Particle Swarm Optimisation algorithms
    Diosan, Laura
    Oltean, Mihai
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2007, 16 (01) : 87 - 109