AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation
被引:2
|
作者:
Varna, Fevzi Tugrul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sussex, Dept Informat, Brighton, E Sussex, EnglandUniv Sussex, Dept Informat, Brighton, E Sussex, England
Varna, Fevzi Tugrul
[1
]
Husbands, Phil
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sussex, Dept Informat, Brighton, E Sussex, EnglandUniv Sussex, Dept Informat, Brighton, E Sussex, England
Husbands, Phil
[1
]
机构:
[1] Univ Sussex, Dept Informat, Brighton, E Sussex, England
来源:
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021)
|
2021年
关键词:
particle swarm optimisation;
swarm intelligence;
D O I:
10.1109/SSCI50451.2021.9660149
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper introduces a new particle swarm optimisation variant: the altruistic heterogeneous particle swarm optimisation algorithm (AHPSO). The algorithm conceptualises particles as energy-driven agents with bio-inspired altruistic behaviour. In our approach, particles possess a current energy level and an activation threshold and are in one of two possible states (active or inactive) depending on their energy levels at time tau. The idea of altruism is used to form lending-borrowing relationships among particles to change an agent's state from inactive to active, and the main search mechanism exploits this idea. Diversity in the swarm, which prevent premature convergence, is maintained via agent states and the level of altruistic behaviour particles exhibit. The performance of AHPSO was compared with 11 metaheuristics and 12 state-of-the-art PSO variants using the CEC'17 and CEC'05 test suites at 30 and 50 dimensions. The AHPSO algorithm outperformed all 23 comparison algorithms on both benchmark test suites at both 30 and 50 dimensions.
机构:
La Trobe Univ, Dept Engn, Bendigo, VIC 3552, AustraliaLa Trobe Univ, Dept Engn, Bendigo, VIC 3552, Australia
Felicetti, Matthew J.
Wang, Dianhui
论文数: 0引用数: 0
h-index: 0
机构:
China Univ Min & Technol, Artificial Intelligence Res Inst, Xuzhou 221116, Peoples R China
Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110819, Peoples R ChinaLa Trobe Univ, Dept Engn, Bendigo, VIC 3552, Australia
机构:
Zhejiang University of Science and Technology, Liuhe Road 318#, Hangzhou City, Zhejiang ProvinceZhejiang University of Science and Technology, Liuhe Road 318#, Hangzhou City, Zhejiang Province
Zhang L.
Jie J.
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang University of Science and Technology, Liuhe Road 318#, Hangzhou City, Zhejiang ProvinceZhejiang University of Science and Technology, Liuhe Road 318#, Hangzhou City, Zhejiang Province
Jie J.
Zheng H.
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang University of Science and Technology, Liuhe Road 318#, Hangzhou City, Zhejiang ProvinceZhejiang University of Science and Technology, Liuhe Road 318#, Hangzhou City, Zhejiang Province
Zheng H.
Wu X.
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang University of Science and Technology, Liuhe Road 318#, Hangzhou City, Zhejiang ProvinceZhejiang University of Science and Technology, Liuhe Road 318#, Hangzhou City, Zhejiang Province
Wu X.
Dai S.
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang University of Science and Technology, Liuhe Road 318#, Hangzhou City, Zhejiang ProvinceZhejiang University of Science and Technology, Liuhe Road 318#, Hangzhou City, Zhejiang Province