AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation
被引:2
|
作者:
Varna, Fevzi Tugrul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sussex, Dept Informat, Brighton, E Sussex, EnglandUniv Sussex, Dept Informat, Brighton, E Sussex, England
Varna, Fevzi Tugrul
[1
]
Husbands, Phil
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sussex, Dept Informat, Brighton, E Sussex, EnglandUniv Sussex, Dept Informat, Brighton, E Sussex, England
Husbands, Phil
[1
]
机构:
[1] Univ Sussex, Dept Informat, Brighton, E Sussex, England
来源:
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021)
|
2021年
关键词:
particle swarm optimisation;
swarm intelligence;
D O I:
10.1109/SSCI50451.2021.9660149
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper introduces a new particle swarm optimisation variant: the altruistic heterogeneous particle swarm optimisation algorithm (AHPSO). The algorithm conceptualises particles as energy-driven agents with bio-inspired altruistic behaviour. In our approach, particles possess a current energy level and an activation threshold and are in one of two possible states (active or inactive) depending on their energy levels at time tau. The idea of altruism is used to form lending-borrowing relationships among particles to change an agent's state from inactive to active, and the main search mechanism exploits this idea. Diversity in the swarm, which prevent premature convergence, is maintained via agent states and the level of altruistic behaviour particles exhibit. The performance of AHPSO was compared with 11 metaheuristics and 12 state-of-the-art PSO variants using the CEC'17 and CEC'05 test suites at 30 and 50 dimensions. The AHPSO algorithm outperformed all 23 comparison algorithms on both benchmark test suites at both 30 and 50 dimensions.
机构:
Univ Kwazulu Natal South Africa, Sch Math Stat & Comp Sci, Private Bag X54001, ZA-4000 Durban, South AfricaUniv Kwazulu Natal South Africa, Sch Math Stat & Comp Sci, Private Bag X54001, ZA-4000 Durban, South Africa
Adewumi, Aderemi Oluyinka
Arasomwan, Akugbe Martins
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kwazulu Natal South Africa, Sch Math Stat & Comp Sci, Private Bag X54001, ZA-4000 Durban, South AfricaUniv Kwazulu Natal South Africa, Sch Math Stat & Comp Sci, Private Bag X54001, ZA-4000 Durban, South Africa
机构:
Information and Control Engineering Faculty, Shenyang Jianzhu University, Shenyang, Liaoning ProvinceInformation and Control Engineering Faculty, Shenyang Jianzhu University, Shenyang, Liaoning Province
Zhao M.
Song X.
论文数: 0引用数: 0
h-index: 0
机构:
Information and Control Engineering Faculty, Shenyang Jianzhu University, Shenyang, Liaoning ProvinceInformation and Control Engineering Faculty, Shenyang Jianzhu University, Shenyang, Liaoning Province
Song X.
Gao Y.
论文数: 0引用数: 0
h-index: 0
机构:
Information Technology Department, Shenyang Gas Co. Ltd., Shenyang, Liaoning ProvinceInformation and Control Engineering Faculty, Shenyang Jianzhu University, Shenyang, Liaoning Province
机构:
Nanchang Inst Technol, Sch Business Adm, Nanchang 330099, Jiangxi, Peoples R ChinaNanchang Inst Technol, Sch Business Adm, Nanchang 330099, Jiangxi, Peoples R China
Wang, Wenjun
Wang, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Inst Technol, Sch Informat Engn, Nanchang 330099, Jiangxi, Peoples R ChinaNanchang Inst Technol, Sch Business Adm, Nanchang 330099, Jiangxi, Peoples R China