AHPSO: Altruistic Heterogeneous Particle Swarm Optimisation Algorithm for Global Optimisation
被引:2
|
作者:
Varna, Fevzi Tugrul
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sussex, Dept Informat, Brighton, E Sussex, EnglandUniv Sussex, Dept Informat, Brighton, E Sussex, England
Varna, Fevzi Tugrul
[1
]
Husbands, Phil
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sussex, Dept Informat, Brighton, E Sussex, EnglandUniv Sussex, Dept Informat, Brighton, E Sussex, England
Husbands, Phil
[1
]
机构:
[1] Univ Sussex, Dept Informat, Brighton, E Sussex, England
来源:
2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021)
|
2021年
关键词:
particle swarm optimisation;
swarm intelligence;
D O I:
10.1109/SSCI50451.2021.9660149
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper introduces a new particle swarm optimisation variant: the altruistic heterogeneous particle swarm optimisation algorithm (AHPSO). The algorithm conceptualises particles as energy-driven agents with bio-inspired altruistic behaviour. In our approach, particles possess a current energy level and an activation threshold and are in one of two possible states (active or inactive) depending on their energy levels at time tau. The idea of altruism is used to form lending-borrowing relationships among particles to change an agent's state from inactive to active, and the main search mechanism exploits this idea. Diversity in the swarm, which prevent premature convergence, is maintained via agent states and the level of altruistic behaviour particles exhibit. The performance of AHPSO was compared with 11 metaheuristics and 12 state-of-the-art PSO variants using the CEC'17 and CEC'05 test suites at 30 and 50 dimensions. The AHPSO algorithm outperformed all 23 comparison algorithms on both benchmark test suites at both 30 and 50 dimensions.
机构:
Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Private Bag X54001, ZA-4000 Durban, South AfricaUniv KwaZulu Natal, Sch Math Stat & Comp Sci, Private Bag X54001, ZA-4000 Durban, South Africa
Adewumi, Aderemi Oluyinka
Arasomwan, Martins Akugbe
论文数: 0引用数: 0
h-index: 0
机构:
Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Private Bag X54001, ZA-4000 Durban, South AfricaUniv KwaZulu Natal, Sch Math Stat & Comp Sci, Private Bag X54001, ZA-4000 Durban, South Africa
机构:
Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Peoples R ChinaNortheastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
Wang, Hongfeng
Yang, Shengxiang
论文数: 0引用数: 0
h-index: 0
机构:
Brunel Univ, Dept Informat Syst & Comp, Uxbridge UB8 3PH, Middx, England
Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Jiangsu, Peoples R ChinaNortheastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
Yang, Shengxiang
Ip, W. H.
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Dept Ind & Syst Engn, Kowloon, Hong Kong, Peoples R ChinaNortheastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
Ip, W. H.
Wang, Dingwei
论文数: 0引用数: 0
h-index: 0
机构:
Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Peoples R ChinaNortheastern Univ, Coll Informat Sci & Engn, Shenyang 110004, Peoples R China
机构:
Intelligent Manufacturing College, Anhui Wenda University of Information Engineering, HefeiIntelligent Manufacturing College, Anhui Wenda University of Information Engineering, Hefei
Ren, Li
Li, Juchen
论文数: 0引用数: 0
h-index: 0
机构:
Intelligent Manufacturing College, Anhui Wenda University of Information Engineering, Hefei
Faculty of Engineering, Technology and Built Environment, UCSI University, Kuala LumpurIntelligent Manufacturing College, Anhui Wenda University of Information Engineering, Hefei