Structure of low dimensional n-Lie algebras over a field of characteristic 2

被引:16
作者
Bai, Rui-pu [1 ]
Wang, Xiao-ling [1 ]
Xiao, Wen-ying [1 ]
An, Hong-wei [1 ]
机构
[1] Hebei Univ, Coll Math & Comp, Baoding 071002, Peoples R China
基金
美国国家科学基金会;
关键词
n-Lie algebras; classification; low dimensions; characteristic; 2;
D O I
10.1016/j.laa.2007.10.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we classify n + 1 dimensional n-Lie algebras over a field F of characteristic 2 and prove that there are no simple n + 2 dimensional n-Lie algebras. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:1912 / 1920
页数:9
相关论文
共 10 条
[1]  
Bai RP, 2000, COMMUN ALGEBRA, V28, P2927
[2]   The strong semi-simple n-Lie algebras [J].
Bai, RP ;
Meng, DJ .
COMMUNICATIONS IN ALGEBRA, 2003, 31 (11) :5331-5341
[3]   The Frattini subalgebra of n-Lie algebras [J].
Bai, Rui Pu ;
Chen, Liang Yun ;
Meng, Dao Ji .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2007, 23 (05) :847-856
[4]  
BARNES DW, 2002, ARXIV07041892
[5]   Representations of vector product n-Lie algebras [J].
Dzhumadil'daev, SI .
COMMUNICATIONS IN ALGEBRA, 2004, 32 (09) :3315-3326
[6]  
FILIPPOV VT, 1985, SIBERIAN MATH J+, V26, P879
[7]  
Kasymov Sh.M., 1987, Algebra Log., V26, P277
[8]  
Ling W., 1993, STRUCTURE N LIE ALGE
[9]   The local structure of n-Poisson and n-Jacobi manifolds [J].
Marmo, G ;
Vilasi, G ;
Vinogradov, AM .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 25 (1-2) :141-182
[10]  
Williams MP., 2004, THESIS N CAROLINA ST