Study of high-Z-coated ignition target by detailed configuration accounting atomic physics for direct-drive inertial confinement fusion

被引:8
作者
Qiao, Xiumei [1 ]
Lan, Ke [1 ,2 ,3 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
[3] Shanghai Jiao Tong Univ, Collaborat Innovat Ctr IFSA, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
DCA atomic physics; direct-drive ICF; high-Z-coated target; LASER; IMPRINT; LAYERS;
D O I
10.1088/1361-6587/aae2dc
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Direct-drive is one of the key approaches in the study of inertial confinement fusion, but the laser imprinting caused by laser intensity inhomogeneities is one of the main obstacles to achieving ignition in direct-drive. It has previously been demonstrated that a thin high-Z overcoat on the laser side of the target can significantly mitigate laser imprinting (S P Obenschain et al 2002 Phys. Plasmas 9 2234). In the current work, the 1D multi-group radiation hydrodynamic code RDMG, coupled with the detailed configuration accounting non-LTE atomic physics package MBDCA (RDMG-MBDCA) was used to study a Au-coated ignition target and its implosion performances under laser direct-drive, and a bare CH target was also simulated for comparison. Our study shows that the shell compressibility in the Au-coated target is enhanced with a smaller in-flight adiabat a if and a higher neutron yield Y-id than in the bare CH target. This is because the Au coating helps to maintain a hotter CH plasma, which can ablate a wider electron conduction region with lower density leading to a weaker second shock, creating a more compressed shell and a higher yield than the bare CH target. We also compared the simulations from RDMG -MBDCA with those from RDMG-AA which is coupled with an averaged-atom (AA) non-LTE model. As a result, the shell from the AA model is less compressed with a higher alpha(if) and a lower Y-id because the AA model gives a higher inward x-ray emission during the pre-pulse than the DCA model does, which therefore drives a stronger shock and leads to a higher fuel entropy.
引用
收藏
页数:9
相关论文
共 57 条
[1]  
Atzeni S., 2004, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter
[2]   Observation of early shell-dopant mix in OMEGA direct-drive implosions and comparisons with radiation-hydrodynamic simulations [J].
Baumgaertel, J. A. ;
Bradley, P. A. ;
Hsu, S. C. ;
Cobble, J. A. ;
Hakel, P. ;
Tregillis, I. L. ;
Krasheninnikova, N. S. ;
Murphy, T. J. ;
Schmitt, M. J. ;
Shah, R. C. ;
Obrey, K. D. ;
Batha, S. ;
Johns, H. ;
Joshi, T. ;
Mayes, D. ;
Mancini, R. C. ;
Nagayama, T. .
PHYSICS OF PLASMAS, 2014, 21 (05)
[3]  
Betti R, 2016, NAT PHYS, V12, P435, DOI [10.1038/nphys3736, 10.1038/NPHYS3736]
[4]   Laser-direct-drive program: Promise, challenge, and path forward [J].
Campbell, E. M. ;
Goncharov, V. N. ;
Sangster, T. C. ;
Regan, S. P. ;
Radha, P. B. ;
Betti, R. ;
Myatt, J. F. ;
Froula, D. H. ;
Rosenberg, M. J. ;
Igumenshchev, I. V. ;
Seka, W. ;
Solodov, A. A. ;
Maximov, A. V. ;
Marozas, J. A. ;
Collins, T. J. B. ;
Turnbull, D. ;
Marshall, F. J. ;
Shvydky, A. ;
Knauer, J. P. ;
McCrory, R. L. ;
Sefkow, A. B. ;
Hohenberger, M. ;
Michel, P. A. ;
Chapman, T. ;
Masse, L. ;
Goyon, C. ;
Ross, S. ;
Bates, J. W. ;
Karasik, M. ;
Oh, J. ;
Weaver, J. ;
Schmitt, A. J. ;
Obenschain, K. ;
Obenschain, S. P. ;
Reyes, S. ;
Van Wonterghem, B. .
MATTER AND RADIATION AT EXTREMES, 2017, 2 (02) :37-54
[5]  
Campbell EM, 1998, AIP CONF PROC, V429, P3, DOI 10.1063/1.55630
[6]   Theoretical quantification of shock-timing sensitivities for direct-drive inertial confinement fusion implosions on OMEGA [J].
Cao, D. ;
Boehly, T. R. ;
Gregor, M. C. ;
Polsin, D. N. ;
Davis, A. K. ;
Radha, P. B. ;
Regan, S. P. ;
Goncharov, V. N. .
PHYSICS OF PLASMAS, 2018, 25 (05)
[7]   THE ELECTRICAL CONDUCTIVITY OF AN IONIZED GAS [J].
COHEN, RS ;
SPITZER, L ;
ROUTLY, PM .
PHYSICAL REVIEW, 1950, 80 (02) :230-238
[8]   Direct-drive inertial confinement fusion: A review [J].
Craxton, R. S. ;
Anderson, K. S. ;
Boehly, T. R. ;
Goncharov, V. N. ;
Harding, D. R. ;
Knauer, J. P. ;
McCrory, R. L. ;
McKenty, P. W. ;
Meyerhofer, D. D. ;
Myatt, J. F. ;
Schmitt, A. J. ;
Sethian, J. D. ;
Short, R. W. ;
Skupsky, S. ;
Theobald, W. ;
Kruer, W. L. ;
Tanaka, K. ;
Betti, R. ;
Collins, T. J. B. ;
Delettrez, J. A. ;
Hu, S. X. ;
Marozas, J. A. ;
Maximov, A. V. ;
Michel, D. T. ;
Radha, P. B. ;
Regan, S. P. ;
Sangster, T. C. ;
Seka, W. ;
Solodov, A. A. ;
Soures, J. M. ;
Stoeckl, C. ;
Zuegel, J. D. .
PHYSICS OF PLASMAS, 2015, 22 (11)
[9]   Experimental demonstration of laser imprint reduction using underdense foams [J].
Delorme, B. ;
Olazabal-Loume, M. ;
Casner, A. ;
Nicolai, Ph. ;
Michel, D. T. ;
Riazuelo, G. ;
Borisenko, N. ;
Breil, J. ;
Fujioka, S. ;
Grech, M. ;
Orekhov, A. ;
Seka, W. ;
Sunahara, A. ;
Froula, D. H. ;
Goncharov, V. ;
Tikhonchuk, V. T. .
PHYSICS OF PLASMAS, 2016, 23 (04)
[10]   NONUNIFORMITY IMPRINT ON THE ABLATION SURFACE OF LASER-IRRADIATED TARGETS [J].
DESSELBERGER, M ;
AFSHARRAD, T ;
KHATTAK, F ;
VIANA, S ;
WILLI, O .
PHYSICAL REVIEW LETTERS, 1992, 68 (10) :1539-1542