An induced natural selection heuristic for finding optimal Bayesian experimental designs

被引:10
作者
Price, David J. [1 ,2 ,3 ,4 ]
Bean, Nigel G. [5 ,6 ]
Ross, Joshua V. [5 ,6 ]
Tuke, Jonathan [5 ,6 ]
机构
[1] Univ Cambridge, Dept Vet Med, Dis Dynam Unit, Madingley Rd, Cambridge CB3 0ES, England
[2] Univ Melbourne, Melbourne Sch Populat & Global Hlth, Ctr Epidemiol & Biostat, Melbourne, Vic 3010, Australia
[3] Univ Melbourne, Peter Doherty Inst Infect & Immun, Victorian Infect Dis Reference Lab, Epidemiol Unit, Melbourne, Vic 3000, Australia
[4] Royal Melbourne Hosp, Melbourne, Vic 3000, Australia
[5] Univ Adelaide, Sch Math Sci, Adelaide, SA 5005, Australia
[6] Univ Adelaide, Sch Math Sci, ARC Ctr Excellence Math & Stat Frontiers, Adelaide, SA 5005, Australia
基金
澳大利亚国家健康与医学研究理事会; 英国生物技术与生命科学研究理事会;
关键词
Bayesian optimal design; Optimisation heuristic; Stochastic models; Sampling windows; SAMPLING TIMES; MODELS;
D O I
10.1016/j.csda.2018.04.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bayesian optimal experimental design has immense potential to inform the collection of data so as to subsequently enhance our understanding of a variety of processes. However, a major impediment is the difficulty in evaluating optimal designs for problems with large, or high-dimensional, design spaces. An efficient search heuristic suitable for general optimisation problems, with a particular focus on optimal Bayesian experimental design problems, is proposed. The heuristic evaluates the objective (utility) function at an initial, randomly generated set of input values. At each generation of the algorithm, input values are "accepted" if their corresponding objective (utility) function satisfies some acceptance criteria, and new inputs are sampled about these accepted points. The new algorithm is demonstrated by evaluating the optimal Bayesian experimental designs for the previously considered death, pharmacokinetic and logistic regression models. Comparisons to the current "gold-standard" method are given to demonstrate the proposed algorithm as a computationally-efficient alternative for moderately-large design problems (i.e., up to approximately 40-dimensions). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:112 / 124
页数:13
相关论文
共 21 条
[1]   Bayesian statistics and the efficiency and ethics of clinical trials [J].
Berry, DA .
STATISTICAL SCIENCE, 2004, 19 (01) :175-187
[2]   Optimal blood sampling time windows for parameter estimation using a population approach: Design of a phase II clinical trial [J].
Chenel, M ;
Ogungbenro, K ;
Duval, V ;
Laveille, C ;
Jochemsen, R ;
Aarons, L .
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2005, 32 (5-6) :737-756
[3]   Optimal observation times in experimental epidemic processes [J].
Cook, Alex R. ;
Gibson, Gavin J. ;
Gilligan, Christopher A. .
BIOMETRICS, 2008, 64 (03) :860-868
[4]   A tutorial on the cross-entropy method [J].
De Boer, PT ;
Kroese, DP ;
Mannor, S ;
Rubinstein, RY .
ANNALS OF OPERATIONS RESEARCH, 2005, 134 (01) :19-67
[5]   Bayesian Experimental Design for Models with Intractable Likelihoods [J].
Drovandi, Christopher C. ;
Pettitt, Anthony N. .
BIOMETRICS, 2013, 69 (04) :937-948
[6]   EVALUATION OF THE PRE-POSTERIOR DISTRIBUTION OF OPTIMIZED SAMPLING TIMES FOR THE DESIGN OF PHARMACOKINETIC STUDIES [J].
Duffull, Stephen B. ;
Graham, Gordon ;
Mengersen, Kerrie ;
Eccleston, John .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2012, 22 (01) :16-29
[7]   Simulation methods for optimal experimental design in systems biology [J].
Faller, D ;
Klingmüller, U ;
Timmer, J .
SIMULATION-TRANSACTIONS OF THE SOCIETY FOR MODELING AND SIMULATION INTERNATIONAL, 2003, 79 (12) :717-725
[8]  
Goldberg DE., 1989, Genetic algorithms in search, optimization and machine learning
[9]   Optimum blood sampling time windows for parameter estimation in population pharmacokinetic experiments [J].
Graham, Gordon ;
Aarons, Leon .
STATISTICS IN MEDICINE, 2006, 25 (23) :4004-4019
[10]   Prospective evaluation of a D-optimal designed population pharmacokinetic study [J].
Green, B ;
Duffull, SB .
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2003, 30 (02) :145-161