Modelling and forecasting cotton production using tuned-support vector regression

被引:2
作者
Saha, Amit [1 ]
Singh, K. N. [2 ]
Ray, Mrinmoy [2 ]
Rathod, Santosha [3 ]
Choudhury, Sharani [4 ]
机构
[1] Cent Silk Board, Cent Sericultural Res & Training Inst, Srirampura 570008, Mysuru, India
[2] ICAR Indian Agr Stat Res Inst, New Delhi 110012, India
[3] ICAR Indian Inst Rice Res, Hyderabad 500030, India
[4] ICAR Indian Agr Res Inst, New Delhi 110012, India
来源
CURRENT SCIENCE | 2021年 / 121卷 / 08期
关键词
ARIMA; cotton production forecasting; SVR; time series; tuned-SVR; PREDICTION;
D O I
10.18520/cs/v121/i8/1090-1098
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
India is the largest producer of cotton in the world. For proper planning and designing of policies related to cotton, robust forecast of future production is utmost necessary. In this study, an effort has been made to model and forecast the cotton production of India using tuned-support vector regression (Tuned-SVR) model, and the importance of tuning has also been pointed out through this study. The Tuned-SVR performed better in both modelling and forecasting of cotton production compared to auto regressive integrated moving average and classical SVR models.
引用
收藏
页码:1090 / 1098
页数:9
相关论文
共 50 条
  • [1] Forecasting financial series using clustering methods and support vector regression
    Vilela, Lucas F. S.
    Leme, Rafael C.
    Pinheiro, Carlos A. M.
    Carpinteiro, Otavio A. S.
    ARTIFICIAL INTELLIGENCE REVIEW, 2019, 52 (02) : 743 - 773
  • [2] Electricity Load Forecasting Using Support Vector Regression with Memetic Algorithms
    Hu, Zhongyi
    Bao, Yukun
    Xiong, Tao
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [3] Rainfall Forecasting using Support Vector Regression Machines
    Velasco, Lemuel Clark
    Aca-ac, Johanne Miguel
    Cajes, Jeb Joseph
    Lactuan, Nove Joshua
    Chit, Suwannit Chareen
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (03) : 231 - 237
  • [4] Covariance matrix forecasting using support vector regression
    Fiszeder, Piotr
    Orzeszko, Witold
    APPLIED INTELLIGENCE, 2021, 51 (10) : 7029 - 7042
  • [5] Solar Radiation Forecasting Using Support Vector Regression
    Shaw, Subham
    Prakash, M.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING & COMMUNICATION ENGINEERING (ICACCE-2019), 2019,
  • [6] Forecasting Groundwater Levels using a Hybrid of Support Vector Regression and Particle Swarm Optimization
    Mozaffari, Saeed
    Javadi, Saman
    Moghaddam, Hamid Kardan
    Randhir, Timothy O.
    WATER RESOURCES MANAGEMENT, 2022, 36 (06) : 1955 - 1972
  • [7] Multiobjective Selection of Input Sensors for Travel Times Forecasting Using Support Vector Regression
    Petrlik, Jiri
    Fucik, Otto
    Sekanina, Lukas
    2014 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN VEHICLES AND TRANSPORTATION SYSTEMS (CIVTS), 2014, : 14 - 21
  • [8] Forecasting Electricity Consumption with Neural Networks and Support Vector Regression
    Ogcu, Gamze
    Demirel, Omer F.
    Zaim, Selim
    8TH INTERNATIONAL STRATEGIC MANAGEMENT CONFERENCE, 2012, 58 : 1576 - 1585
  • [9] POTENTIAL OF SUPPORT-VECTOR REGRESSION FOR FORECASTING STREAM FLOW
    Radzi, Mohd Rashid Bin Mohd
    Shamshirband, Shahaboddin
    Aghabozorgi, Saeed
    Misra, Sanjay
    Akib, Shatirah
    Kiah, Laiha Mat
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2014, 21 (05): : 1017 - 1024
  • [10] Arctic Sea Ice Extent Forecasting Using Support Vector Regression
    Reid, Tyler G. R.
    Tarantino, Paul M.
    2014 13TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2014, : 1 - 6