A hypothetical skin sensitisation next generation risk assessment for coumarin in cosmetic products

被引:17
作者
Reynolds, G. [1 ]
Reynolds, J. [1 ]
Gilmour, N. [1 ]
Cubberley, R. [1 ]
Spriggs, S. [1 ]
Aptula, A. [1 ]
Przybylak, K. [1 ]
Windebank, S. [1 ]
Maxwell, G. [1 ]
Baltazar, M. T. [1 ]
机构
[1] Unilever Safety & Environm Assurance Ctr, Colworth Sci Pk, Sharnbrook MK44 1LQ, Beds, England
关键词
Skin sensitisation; Allergic contact dermatitis; Next generation risk assessment; Non-animal alternatives; New approach methodologies; Consumer exposure; Uncertainty analysis; Decision making; Metabolism; NONANIMAL METHODS; METABOLISM; HAPTENS; 3,4-EPOXIDATION; RAT; PRE;
D O I
10.1016/j.yrtph.2021.105075
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
Next generation Risk Assessment (NGRA) is an exposure-led, hypothesis-driven approach which integrates new approach methodologies (NAMs) to assure safety without generating animal data. This hypothetical skin allergy risk assessment of two consumer products - face cream containing 0.1% coumarin and deodorant containing 1% coumarin - demonstrates the application of our skin allergy NGRA framework which incorporates our Skin Allergy Risk Assessment (SARA) Model. SARA uses Bayesian statistics to provide a human relevant point of departure and risk metric for a given chemical exposure based upon input data that can include both NAMs and historical in vivo studies. Regardless of whether NAM or in vivo inputs were used, the model predicted that the face cream and deodorant exposures were low and high risk respectively. Using only NAM data resulted in a minor underestimation of risk relative to in vivo. Coumarin is a predicted pro-hapten and consequently, when applying this mechanistic understanding to the selection of NAMs the discordance in relative risk could be minimized. This case study demonstrates how integrating a computational model and generating bespoke NAM data in a weight of evidence framework can build confidence in safety decision making.
引用
收藏
页数:11
相关论文
共 43 条
[1]   Reactivity Profiling: Covalent Modification of Single Nucleophile Peptides for Skin Sensitization Risk Assessment [J].
Aleksic, Maja ;
Thain, Emma ;
Roger, Delphine ;
Saib, Ouarda ;
Davies, Michael ;
Li, Jin ;
Aptula, Aynur ;
Zazzeroni, Raniero .
TOXICOLOGICAL SCIENCES, 2009, 108 (02) :401-411
[2]   Prevalence of contact allergy in the general population: A systematic review and meta-analysis [J].
Alinaghi, Farzad ;
Bennike, Niels H. ;
Egeberg, Alexander ;
Thyssen, Jacob P. ;
Johansen, Jeanne D. .
CONTACT DERMATITIS, 2019, 80 (02) :77-85
[3]  
[Anonymous], 2010, Test No. 429: Skin Sensitisation: Local Lymph Node Assay
[4]   Dermal sensitization quantitative risk assessment (QRA) for fragrance ingredients [J].
Api, Anne Marie ;
Basketter, David A. ;
Cadby, Peter A. ;
Cano, Marie-France ;
Ellis, Graham ;
Gerberick, G. Frank ;
Griem, Peter ;
McNamee, Pauline M. ;
Ryan, Cindy A. ;
Safford, Robert .
REGULATORY TOXICOLOGY AND PHARMACOLOGY, 2008, 52 (01) :3-23
[5]   Haptens, prohaptens and prehaptens, or electrophiles and proelectrophiles [J].
Aptula, Aynur O. ;
Roberts, David W. ;
Pease, Camilla K. .
CONTACT DERMATITIS, 2007, 56 (01) :54-U14
[6]   A Next-Generation Risk Assessment Case Study for Coumarin in Cosmetic Products [J].
Baltazar, Maria T. ;
Cable, Sophie ;
Carmichael, Paul L. ;
Cubberley, Richard ;
Cull, Tom ;
Delagrange, Mona ;
Dent, Matthew P. ;
Hatherell, Sarah ;
Houghton, Jade ;
Kukic, Predrag ;
Li, Hequn ;
Lee, Mi-Young ;
Malcomber, Sophie ;
Middleton, Alistair M. ;
Moxon, Thomas E. ;
Nathanail, Alexis, V ;
Nicol, Beate ;
Pendlington, Ruth ;
Reynolds, Georgia ;
Reynolds, Joe ;
White, Andrew ;
Westmoreland, Carl .
TOXICOLOGICAL SCIENCES, 2020, 176 (01) :236-252
[7]   Comparative in vitro skin absorption and metabolism of coumarin (1,2-benzopyrone) in human, rat, and mouse [J].
BeckleyKartey, SAJ ;
Hotchkiss, SAM ;
Capel, M .
TOXICOLOGY AND APPLIED PHARMACOLOGY, 1997, 145 (01) :34-42
[8]   Ab initio chemical safety assessment: A workflow based on exposure considerations and non-animal methods [J].
Berggren E. ;
White A. ;
Ouedraogo G. ;
Paini A. ;
Richarz A.-N. ;
Bois F.Y. ;
Exner T. ;
Leite S. ;
Grunsven L.A.V. ;
Worth A. ;
Mahony C. .
Computational Toxicology, 2017, 4 :31-44
[9]   In vitro kinetics of coumarin 3,4-epoxidation:: Application to species differences in toxicity and carcinogenicity [J].
Born, SL ;
Caudill, D ;
Smith, BJ ;
Lehman-McKeeman, LD .
TOXICOLOGICAL SCIENCES, 2000, 58 (01) :23-31
[10]   Identification of the cytochromes P450 that catalyze coumarin 3,4-epoxidation and 3-hydroxylation [J].
Born, SL ;
Caudill, D ;
Fliter, KL ;
Purdon, MP .
DRUG METABOLISM AND DISPOSITION, 2002, 30 (05) :483-487