Neural Network Control Algorithm for Stand-Alone Solar Cell Electrical Energy Conversion System

被引:0
作者
Belova, Irina A. [1 ]
Martinovich, Miroslav V. [1 ]
机构
[1] Novosibirsk State Tech Univ, Novosibirsk, Russia
来源
2015 16TH INTERNATIONAL CONFERENCE OF YOUNG SPECIALISTS ON MICRO/NANOTECHNOLOGIES AND ELECTRON DEVICES | 2015年
关键词
Solar cell; MPPT; ANN; Matlab;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The results of the study to achieve maximum efficiency of the photovoltaic module using the maximum power tracking algorithm are presented. A fast and accurate tracking system using an artificial neural network is offered. Modelling carried out in the software package Matlab.
引用
收藏
页码:387 / 390
页数:4
相关论文
共 7 条
[1]  
[Anonymous], WSEAS T POWER SYSTEM
[2]  
[Anonymous], IEEE T ENERGY CONV
[3]  
[Anonymous], IJCSI INT J COMPUTER
[4]  
[Anonymous], INT J SCI ENG TECHNO
[5]   Solar cell efficiency tables (Version 45) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2015, 23 (01) :1-9
[6]   Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and Artificial Neural Network [J].
Magnier, Laurent ;
Haghighat, Fariborz .
BUILDING AND ENVIRONMENT, 2010, 45 (03) :739-746
[7]  
Nedumgatt J.J., 2011, India Conference (INDICON), 2011 Annual IEEE, P1, DOI [10.1109/INDCON.2011.6139513, DOI 10.1109/INDCON.2011.6139513]