Regression-based Monte Carlo Integration

被引:2
作者
Salaun, Corentin [1 ]
Gruson, Adrien [2 ,3 ]
Hua, Binh-Son [4 ]
Hachisuka, Toshiya [5 ]
Singh, Gurprit [1 ]
机构
[1] Max Planck Inst Informat, Saarbrucken, Germany
[2] McGill Univ, Montreal, PQ, Canada
[3] Ecole Technol Super, Montreal, PQ, Canada
[4] VinAI Res, Hanoi, Vietnam
[5] Univ Waterloo, Waterloo, ON, Canada
来源
ACM TRANSACTIONS ON GRAPHICS | 2022年 / 41卷 / 04期
基金
加拿大自然科学与工程研究理事会;
关键词
Monte Carlo integration; Regression; Control Variates; Light transport simulation;
D O I
10.1145/3528223.3530095
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Monte Carlo integration is typically interpreted as an estimator of the expected value using stochastic samples. There exists an alternative interpretation in calculus where Monte Carlo integration can be seen as estimating a constant function-from the stochastic evaluations of the integrand-that integrates to the original integral. The integral mean value theorem states that this constant function should be the mean (or expectation) of the integrand. Since both interpretations result in the same estimator, little attention has been devoted to the calculus-oriented interpretation. We showthat the calculus-oriented interpretation actually implies the possibility of using a more complex function than a constant one to construct a more efficient estimator for Monte Carlo integration. We build a new estimator based on this interpretation and relate our estimator to control variates with least-squares regression on the stochastic samples of the integrand. Unlike prior work, our resulting estimator is provably better than or equal to the conventional Monte Carlo estimator. To demonstrate the strength of our approach, we introduce a practical estimator that can act as a simple drop-in replacement for conventional Monte Carlo integration. We experimentally validate our framework on various light transport integrals. The code is available at https://github.com/iribis/regressionmc.
引用
收藏
页数:14
相关论文
共 38 条
[1]  
[Anonymous], 1997, Robust Monte Carlo Methods for Light Transport Simulation
[2]  
[Anonymous], 1995, THESIS STANFORD U
[3]  
[Anonymous], 1994, AMBIENT TERM VARIANC
[4]   Integrating Clipped Spherical Harmonics Expansions [J].
Belcour, Laurent ;
Xie, Guofu ;
Hery, Christophe ;
Meyer, Mark ;
Jarosz, Wojciech ;
Nowrouzezahrai, Derek .
ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (02)
[5]   Nonlinearly Weighted First-order Regression for Denoising Monte Carlo Renderings [J].
Bitterli, Benedikt ;
Rousselle, Fabrice ;
Moon, Bochang ;
Iglesias-Guitian, Jose A. ;
Adler, David ;
Mitchell, Kenny ;
Jarosz, Wojciech ;
Novak, Jan .
COMPUTER GRAPHICS FORUM, 2016, 35 (04) :107-117
[6]   Exploiting visibility correlation in direct illumination [J].
Clarberg, Petrik ;
Akenine-Moller, Tomas .
COMPUTER GRAPHICS FORUM, 2008, 27 (04) :1125-1136
[7]   Primary-space Adaptive Control Variates Using Piecewise-polynomial Approximations [J].
Crespo, Miguel ;
Jarabo, Adrian ;
Munoz, Adolfo .
ACM TRANSACTIONS ON GRAPHICS, 2021, 40 (03)
[8]  
Davis P.J., 1984, Methods of Numerical Integration, V2nd ed.
[9]  
Fan Shaohua, 2006, OPTIMIZING CONTROL V
[10]  
Glynn PW, 2002, MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, P27