Explicit Gromov-Hausdorff compactifications of moduli spaces of Kahler-Einstein Fano manifolds

被引:23
作者
Spotti, Cristiano [1 ,2 ]
Sun, Song [3 ,4 ]
机构
[1] Aarhus Univ, Ny Munkegade 118, Aarhus, Denmark
[2] QGM Ctr Quantum Geometry Moduli Spaces, Ny Munkegade 118, Aarhus, Denmark
[3] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[4] SUNY Stony Brook, Stony Brook, NY 11794 USA
关键词
RICCI CURVATURE; COMPLEX-SURFACES; TANGENT-CONES; METRICS; CONTINUITY; EXISTENCE; RIGIDITY;
D O I
10.4310/PAMQ.2017.v13.n3.a5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We exhibit the first non-trivial concrete examples of Gromov-Hausdorff compactifications of moduli spaces of Kahler-Einstein Fano manifolds in all complex dimensions bigger than two (Fano K-moduli spaces). We also discuss potential applications to explicit study of moduli spaces of K-stable Fano manifolds with large anti-canonical volume. Our arguments are based on recent progress about the geometry of metric tangent cones and on related ideas about the algebro-geometric study of singularities of K-stable Fano varieties.
引用
收藏
页码:477 / 515
页数:39
相关论文
共 68 条
[1]   The moduli space of cubic threefolds [J].
Allcock, D .
JOURNAL OF ALGEBRAIC GEOMETRY, 2003, 12 (02) :201-223
[2]   CONVERGENCE AND RIGIDITY OF MANIFOLDS UNDER RICCI CURVATURE BOUNDS [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1990, 102 (02) :429-445
[3]  
Anderson MT., 1989, J. Am. Math. Soc, V2, P455, DOI [10.1090/S0894-0347-1989-0999661-1, DOI 10.1090/S0894-0347-1989-0999661-1, DOI 10.2307/1990939]
[4]  
[Anonymous], ARXIV170601933
[5]  
[Anonymous], 1995, Sugaku, V47, P125
[6]  
[Anonymous], ARXIV160501034
[7]  
[Anonymous], ARXIV160608261
[8]  
Arezzo C, 2006, J REINE ANGEW MATH, V591, P177
[9]   Pencils of quadrics, binary forms and hyperelliptic curves [J].
Avritzer, D ;
Lange, H .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (12) :5541-5561
[10]   K-polystability of Q-Fano varieties admitting Kahler-Einstein metrics [J].
Berman, Robert J. .
INVENTIONES MATHEMATICAE, 2016, 203 (03) :973-1025