A note on optimal Hermite interpolation in Sobolev spaces

被引:2
作者
Xu, Guiqiao [1 ]
Yu, Xiaochen [1 ]
机构
[1] Tianjin Normal Univ, Dept Math, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal Hermite interpolation; Sobolev space; Worst-case setting; LAGRANGE INTERPOLATION; WEAK TRACTABILITY; APPROXIMATION; SYSTEMS;
D O I
10.1186/s13660-021-02741-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the optimal Hermite interpolation of Sobolev spaces W-infinity(n)[a, b], n is an element of N in space L-infinity[a, b] and weighted spaces L-p,L-omega[a, b], 1 <= p < infinity with omega a continuous-integrable weight function in (a, b) when the amount of Hermite data is n. We proved that the Lagrange interpolation algorithms based on the zeros of polynomial of degree n with the leading coefficient 1 of the least deviation from zero in L-infinity (or L-p,L-omega[a, b], 1 <= p < infinity) are optimal for W-infinity(n)[a, b] in L-infinity[a, b] (or L-p,L-omega[a, b], 1 <= p < infinity). We also give the optimal Hermite interpolation algorithms when we assume the endpoints are included in the interpolation systems.
引用
收藏
页数:14
相关论文
共 16 条
[1]   Compressive Hermite Interpolation: Sparse, High-Dimensional Approximation from Gradient-Augmented Measurements [J].
Adcock, Ben ;
Sui, Yi .
CONSTRUCTIVE APPROXIMATION, 2019, 50 (01) :167-207
[2]  
Babaev SS, 2019, CALCOLO, V56, DOI 10.1007/s10092-019-0320-9
[3]   High dimensional polynomial interpolation on sparse grids [J].
Barthelmann, V ;
Novak, E ;
Ritter, K .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2000, 12 (04) :273-288
[4]  
DeVore R., 1993, CONSTR APPROX, DOI [10.1007/978-3-662-02888-9, DOI 10.1007/978-3-662-02888-9]
[5]   On weak tractability of the Clenshaw-Curtis Smolyak algorithm [J].
Hinrichs, Aicke ;
Novak, Erich ;
Ullrich, Mario .
JOURNAL OF APPROXIMATION THEORY, 2014, 183 :31-44
[6]   ON NODE DISTRIBUTIONS FOR INTERPOLATION AND SPECTRAL METHODS [J].
Hoang, N. S. .
MATHEMATICS OF COMPUTATION, 2016, 85 (298) :667-692
[7]  
Kress R., 2003, NUMERICAL ANAL
[8]   Exponential Convergence of an Approximation Problem for Infinitely Differentiable Multivariate Functions [J].
Liu, Yongping ;
Xu, Guiqiao ;
Zhang, Jie .
MATHEMATICAL NOTES, 2018, 103 (5-6) :769-779
[9]   Optimal systems of nodes for Lagrange interpolation on bounded intervals. A survey [J].
Mastroianni, G ;
Occorsio, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 134 (1-2) :325-341
[10]   On polynomial chaos expansion via gradient-enhanced l1-minimization [J].
Peng, Ji ;
Hampton, Jerrad ;
Doostan, Alireza .
JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 310 :440-458