Accuracy benchmark of the GeneMind GenoLab M sequencing platform for WGS and WES analysis

被引:5
作者
Li, Chaoyang [1 ]
Fan, Xue [2 ]
Guo, Xin [3 ]
Liu, Yongfeng [1 ]
Wang, Miao [1 ]
Zhao, Xiao Chao [1 ]
Wu, Ping [1 ]
Yan, Qin [1 ]
Sun, Lei [1 ]
机构
[1] Gene Mind Biosci Co Ltd, Shenzhen, Peoples R China
[2] Third Peoples Hosp Longgang Dist, Shenzhen, Peoples R China
[3] Longgang Dist Matern & Child Healthcare Hosp Shen, Dept Pediat, Shenzhen, Peoples R China
关键词
GenoLab M; NovaSeq; 6000; Nextseq; 550; WGS; WES; NA12878; SEGMENTAL DUPLICATIONS; GENOME ANALYSIS; IMPACT;
D O I
10.1186/s12864-022-08775-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background GenoLab M is a recently developed next-generation sequencing (NGS) platform from GeneMind Biosciences. To establish the performance of GenoLab M, we present the first report to benchmark and compare the WGS and WES sequencing data of the GenoLab M sequencer to NovaSeq 6000 and NextSeq 550 platform in various types of analysis. For WGS, thirty-fold sequencing from Illumina NovaSeq platform and processed by GATK pipeline is currently considered as the golden standard. Thus this dataset is generated as a benchmark reference in this study. Results GenoLab M showed an average of 94.62% of Q20 percentage for base quality, while the NovaSeq was slightly higher at 96.97%. However, GenoLab M outperformed NovaSeq or NextSeq at a duplication rate, suggesting more usable data after deduplication. For WGS short variant calling, GenoLab M showed significant accuracy improvement over the same depth dataset from NovaSeq, and reached similar accuracy to NovaSeq 33X dataset with 22x depth. For 100X WES, the F-score and Precision in GenoLab M were higher than NovaSeq or NextSeq, especially for InDel calling. Conclusions GenoLab M is a promising NGS platform for high-performance WGS and WES applications. For WGS, 22X depth in the GenoLab M sequencing platform offers a cost-effective alternative to the current mainstream 33X depth on Illumina.
引用
收藏
页数:11
相关论文
共 39 条
  • [21] Optimal sequencing depth design for whole genome re-sequencing in pigs
    Jiang, Yifan
    Jiang, Yao
    Wang, Sheng
    Zhang, Qin
    Ding, Xiangdong
    [J]. BMC BIOINFORMATICS, 2019, 20 (01)
  • [22] Sentieon DNASeq Variant Calling Workflow Demonstrates Strong Computational Performance and Accuracy
    Kendig, Katherine, I
    Baheti, Saurabh
    Bockol, Matthew A.
    Drucker, Travis M.
    Hart, Steven N.
    Heldenbrand, Jacob R.
    Hernaez, Mikel
    Hudson, Matthew E.
    Kalmbach, Michael T.
    Klee, Eric W.
    Mattson, Nathan R.
    Ross, Christian A.
    Taschuk, Morgan
    Wieben, Eric D.
    Wiepert, Mathieu
    Wildman, Derek E.
    Mainzer, Liudmila S.
    [J]. FRONTIERS IN GENETICS, 2019, 10
  • [23] Comparative analysis of 7 short-read sequencing platforms using the Korean Reference Genome: MGI and Illumina sequencing benchmark for whole-genome sequencing
    Kim, Hak-Min
    Jeon, Sungwon
    Chung, Oksung
    Jun, Je Hoon
    Kim, Hui-Su
    Blazyte, Asta
    Lee, Hwang-Yeol
    Yu, Youngseok
    Cho, Yun Sung
    Bolser, Dan M.
    Bhak, Jong
    [J]. GIGASCIENCE, 2021, 10 (03):
  • [24] The Next-Generation Sequencing Revolution and Its Impact on Genomics
    Koboldt, Daniel C.
    Steinberg, Karyn Meltz
    Larson, David E.
    Wilson, Richard K.
    Mardis, Elaine R.
    [J]. CELL, 2013, 155 (01) : 27 - 38
  • [25] Comparative analysis of novel MGISEQ-2000 sequencing platform vs Illumina HiSeq 2500 for whole-genome sequencing
    Korostin, Dmitriy
    Kulemin, Nikolay
    Naumov, Vladimir
    Belova, Vera
    Kwon, Dmitriy
    Gorbachev, Alexey
    [J]. PLOS ONE, 2020, 15 (03):
  • [26] Best practices for benchmarking germline small-variant calls in human genomes
    Krusche, Peter
    Trigg, Len
    Boutros, Paul C.
    Mason, Christopher E.
    De La Vega, Francisco M.
    Moore, Benjamin L.
    Gonzalez-Porta, Mar
    Eberle, Michael A.
    Tezak, Zivana
    Lababidi, Samir
    Truty, Rebecca
    Asimenos, George
    Funke, Birgit
    Fleharty, Mark
    Chapman, Brad A.
    Salit, Marc
    Zook, Justin M.
    [J]. NATURE BIOTECHNOLOGY, 2019, 37 (05) : 555 - +
  • [27] Next-Generation Sequencing and Emerging Technologies
    Kumar, Kishore R.
    Cowley, Mark J.
    Davis, Ryan L.
    [J]. SEMINARS IN THROMBOSIS AND HEMOSTASIS, 2019, 45 (07) : 661 - 673
  • [28] Comparative performance of the GenoLab M and NovaSeq 6000 sequencing platforms for transcriptome and LncRNA analysis
    Liu, Yongfeng
    Han, Ran
    Zhou, Letian
    Luo, Mingjie
    Zeng, Lidong
    Zhao, Xiaochao
    Ma, Yukun
    Zhou, Zhiliang
    Sun, Lei
    [J]. BMC GENOMICS, 2021, 22 (01)
  • [29] Genome sequencing in microfabricated high-density picolitre reactors
    Margulies, M
    Egholm, M
    Altman, WE
    Attiya, S
    Bader, JS
    Bemben, LA
    Berka, J
    Braverman, MS
    Chen, YJ
    Chen, ZT
    Dewell, SB
    Du, L
    Fierro, JM
    Gomes, XV
    Godwin, BC
    He, W
    Helgesen, S
    Ho, CH
    Irzyk, GP
    Jando, SC
    Alenquer, MLI
    Jarvie, TP
    Jirage, KB
    Kim, JB
    Knight, JR
    Lanza, JR
    Leamon, JH
    Lefkowitz, SM
    Lei, M
    Li, J
    Lohman, KL
    Lu, H
    Makhijani, VB
    McDade, KE
    McKenna, MP
    Myers, EW
    Nickerson, E
    Nobile, JR
    Plant, R
    Puc, BP
    Ronan, MT
    Roth, GT
    Sarkis, GJ
    Simons, JF
    Simpson, JW
    Srinivasan, M
    Tartaro, KR
    Tomasz, A
    Vogt, KA
    Volkmer, GA
    [J]. NATURE, 2005, 437 (7057) : 376 - 380
  • [30] The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data
    McKenna, Aaron
    Hanna, Matthew
    Banks, Eric
    Sivachenko, Andrey
    Cibulskis, Kristian
    Kernytsky, Andrew
    Garimella, Kiran
    Altshuler, David
    Gabriel, Stacey
    Daly, Mark
    DePristo, Mark A.
    [J]. GENOME RESEARCH, 2010, 20 (09) : 1297 - 1303