Evaluation of methods to purify virus-like particles for metagenomic sequencing of intestinal viromes

被引:140
作者
Kleiner, Manuel [1 ]
Hooper, Lora V. [1 ,2 ]
Duerkop, Breck A. [1 ]
机构
[1] Univ Texas SW Med Ctr Dallas, Dept Immunol, Dallas, TX 75390 USA
[2] Univ Texas SW Med Ctr Dallas, Howard Hughes Med Inst, Dallas, TX 75390 USA
关键词
Virus metagenomics; Viral metagenomes; Virus-like particles; Microbiome; Bacteriophage; CsCl density gradient; SINGLE-STRANDED-DNA; MULTIPLE DISPLACEMENT AMPLIFICATION; LIBRARY PREPARATION; GENOMICS; MICROBIOTA; BACTERIA;
D O I
10.1186/s12864-014-1207-4
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Viruses are a significant component of the intestinal microbiota in mammals. In recent years, advances in sequencing technologies and data analysis techniques have enabled detailed metagenomic studies investigating intestinal viromes (collections of bacteriophage and eukaryotic viral nucleic acids) and their potential contributions to the ecology of the microbiota. An important component of virome studies is the isolation and purification of virus-like particles (VLPs) from intestinal contents or feces. Several methods have been applied to isolate VLPs from intestinal samples, yet to our knowledge, the efficiency and reproducibility between methods have not been explored. A rigorous evaluation of methods for VLP purification is critical as many studies begin to move from descriptive analyses of virus diversity to studies striving to quantitatively compare viral abundances across many samples. Therefore, reproducible VLP purification methods which allow for high sample throughput are needed. Here we compared and evaluated four methods for VLP purification using artificial intestinal microbiota samples of known bacterial and viral composition. Results: We compared the following four methods of VLP purification from fecal samples: (i) filtration + DNase, (ii) dithiothreitol treatment + filtration + DNase, (iii) filtration + DNase + PEG precipitation and (iv) filtration + DNase + CsCl density gradient centrifugation. Three of the four tested methods worked well for VLP purification. We observed several differences between methods related to the removal efficiency of bacterial and host DNAs and biases against specific phages. In particular the CsCl density gradient centrifugation method, which is frequently used for VLP purification, was most efficient in removing host derived DNA, but also showed strong discrimination against specific phages and showed a lower reproducibility of quantitative results. Conclusions: Based on our data we recommend the use of methods (i) or (ii) for large scale studies when quantitative comparison of viral abundances across samples is required. The CsCl density gradient centrifugation method, while being excellently suited to achieve highly purified samples, in our opinion, should be used with caution when performing quantitative studies.
引用
收藏
页数:15
相关论文
共 57 条
[1]   Molecular Bases and Role of Viruses in the Human Microbiome [J].
Abeles, Shira R. ;
Pride, David T. .
JOURNAL OF MOLECULAR BIOLOGY, 2014, 426 (23) :3892-3906
[2]   5500 Phages examined in the electron microscope [J].
Ackermann, H. -W. .
ARCHIVES OF VIROLOGY, 2007, 152 (02) :227-243
[3]   A virus discovery method incorporating DNase treatment and its application to the identification of two bovine parvovirus species [J].
Allander, T ;
Emerson, SU ;
Engle, RE ;
Purcell, RH ;
Bukh, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (20) :11609-11614
[4]   Hydroxyapatite-Mediated Separation of Double-Stranded DNA, Single-Stranded DNA, and RNA Genomes from Natural Viral Assemblages [J].
Andrews-Pfannkoch, Cynthia ;
Fadrosh, Douglas W. ;
Thorpe, Joyce ;
Williamson, Shannon J. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2010, 76 (15) :5039-5045
[5]  
[Anonymous], 1989, Cold Spring Harbor
[6]   Host-bacterial mutualism in the human intestine [J].
Bäckhed, F ;
Ley, RE ;
Sonnenburg, JL ;
Peterson, DA ;
Gordon, JI .
SCIENCE, 2005, 307 (5717) :1915-1920
[7]   SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing [J].
Bankevich, Anton ;
Nurk, Sergey ;
Antipov, Dmitry ;
Gurevich, Alexey A. ;
Dvorkin, Mikhail ;
Kulikov, Alexander S. ;
Lesin, Valery M. ;
Nikolenko, Sergey I. ;
Son Pham ;
Prjibelski, Andrey D. ;
Pyshkin, Alexey V. ;
Sirotkin, Alexander V. ;
Vyahhi, Nikolay ;
Tesler, Glenn ;
Alekseyev, Max A. ;
Pevzner, Pavel A. .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2012, 19 (05) :455-477
[8]   Bacteriophage adhering to mucus provide a non-host-derived immunity [J].
Barr, Jeremy J. ;
Auro, Rita ;
Furlan, Mike ;
Whiteson, Katrine L. ;
Erb, Marcella L. ;
Pogliano, Joe ;
Stotland, Aleksandr ;
Wolkowicz, Roland ;
Cutting, Andrew S. ;
Doran, Kelly S. ;
Salamon, Peter ;
Youle, Merry ;
Rohwer, Forest .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (26) :10771-10776
[9]   Physical fractionation of aquatic viral assemblages [J].
Brum, Jennifer R. ;
Steward, Grieg F. .
LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2011, 9 :150-163
[10]   BLAST plus : architecture and applications [J].
Camacho, Christiam ;
Coulouris, George ;
Avagyan, Vahram ;
Ma, Ning ;
Papadopoulos, Jason ;
Bealer, Kevin ;
Madden, Thomas L. .
BMC BIOINFORMATICS, 2009, 10