Estimates of the derivatives for parabolic operators with unbounded coefficients

被引:31
作者
Bertoldi, M
Lorenzi, L
机构
[1] Delft Univ Technol, NL-2600 GA Delft, Netherlands
[2] Univ Parma, Dipartimento Matemat, I-43100 Parma, Italy
关键词
elliptic and parabolic operators with unbounded coefficients in R-N; Markov semigroups; uniform and pointwise estimates; optimal Schauder estimates;
D O I
10.1090/S0002-9947-05-03781-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of second-order uniformly elliptic operators A with unbounded coefficients in R-N. Using a Bernstein approach we provide several uniform estimates for the semigroup T(t) generated by the realization of the operator A in the space of all bounded and continuous or Holder continuous functions in R-N. As a consequence, we obtain optimal Schauder estimates for the solution to both the elliptic equation lambda u - Au = f (lambda > 0) and the nonhomogeneous Dirichlet Cauchy problem D(t)u = Au + g. Then, we prove two different kinds of pointwise estimates of T(t) that can be used to prove a Liouville-type theorem. Finally, we provide sharp estimates of the semigroup T(t) in weighted L-p-spaces related to the invariant measure associated with the semigroup.
引用
收藏
页码:2627 / 2664
页数:38
相关论文
共 19 条
[1]   Levy-Gromov's isoperimetric inequality for an infinite dimensional diffusion generator [J].
Bakry, D ;
Ledoux, M .
INVENTIONES MATHEMATICAE, 1996, 123 (02) :259-281
[2]  
Bakry D., 1985, LECT NOTES MATH, V19, P145
[3]   Gradient estimates in parabolic problems with unbounded coefficients [J].
Bertoldi, M ;
Fornaro, S .
STUDIA MATHEMATICA, 2004, 165 (03) :221-254
[4]  
BERTOLDI M, 2002, THESIS U TRENTO
[5]  
Cerrai S., 2001, 2 ORDER PDES FINITE, V1762, DOI [10.1007/b80743, DOI 10.1007/B80743]
[6]  
DAPRATO G, 1999, RIV MAT U PARMA, V6, P245
[7]  
Friedman A., 1964, Partial Differential Equations of Parabolic Type
[8]  
Hasminskii R. Z., 1969, STOCHASTIC STABILITY
[9]  
Krylov NV, 1995, Introduction to theory of diffusion processes
[10]  
LADIZHENSKAJA OA, 1968, LINEAR QUASILINEAR E