Focus shaping of cylindrically polarized Bessel-Gaussian beam modulated by Bessel gratings by a high numerical aperture objective

被引:4
作者
El Halba, E. M. [1 ]
Ez-Zariy, L. [1 ]
Boustimi, M. [2 ]
Belafhal, A. [1 ]
机构
[1] ChouaibDoukkali Univ, Fac Sci, Dept Phys, Lab Nucl Atom & Mol Phys, POB 20, El Jadida 24000, Morocco
[2] Umm Al QuraUniv, Coll Appl Sci, Phys Dept, POB 715, Mecca 21955, Saudi Arabia
关键词
Polarization; Focus shaping; Bessel-Gaussian beam modulated by Bessel gratings; High numerical aperture; INTENSITY DISTRIBUTION; VECTOR BEAMS; AZIMUTHAL; DIFFRACTION; FIELD;
D O I
10.1007/s11082-017-1045-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The focus-shaping technique of the cylindrically polarized Bessel-Gaussian-like beam, referred to the cylindrically polarized Bessel-Gaussian beam modulated by Bessel gratings, propagating through a high numerical-aperture lens is investigated theoretically and numerically in this paper, using the vector diffraction theory method. Results show that the intensity distribution in the focal region can be influenced considerably by: the beam topological charges (m, n), the beam parameter beta and the polarization angle phi(0). The intensity distribution in focal region can be tailored considerably by appropriately adjusting the polarization angle. Peak-centered, donut and flattop focal shapes with extended focal depth which are potentially useful in optical tweezers, material processing and laser printing can be obtained using this technique.
引用
收藏
页数:23
相关论文
共 44 条
[1]  
Abramowitz M., 1964, National Bureau of Standards Applied Mathematics Series, DOI DOI 10.1119/1.15378
[2]   Effect of coma on tightly focused cylindrically polarized vortex beams [J].
Anita, G. Therese ;
Umamageswari, N. ;
Prabakaran, K. ;
Pillai, T. V. S. ;
Rajesh, K. B. .
OPTICS AND LASER TECHNOLOGY, 2016, 76 :1-5
[3]  
[Anonymous], 2000, ADV OPTICAL IMAGING
[4]   Bessel-Gauss beams as rigorous solutions of the Helmholtz equation [J].
April, Alexandre .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2011, 28 (10) :2100-2107
[5]  
Bagini V, 1996, J MOD OPTIC, V43, P1155, DOI 10.1080/09500349608232794
[6]   Theoretical intensity distribution of internal conical refraction [J].
Belafhal, A .
OPTICS COMMUNICATIONS, 2000, 178 (4-6) :257-265
[7]   Collins formula and propagation of Bessel-modulated Gaussian light beams through an ABCD optical system [J].
Belafhal, A ;
Dalil-Essakali, L .
OPTICS COMMUNICATIONS, 2000, 177 (1-6) :181-188
[8]   Bessel-like beams with z-dependent cone angles [J].
Belyi, Vladimir ;
Forbes, Andrew ;
Kazak, Nikolai ;
Khilo, Nikolai ;
Ropot, P. .
OPTICS EXPRESS, 2010, 18 (03) :1966-1973
[9]  
Born M., 1999, Principles of optics, Vseventh
[10]   NON-DIFFRACTIVE VECTOR BESSEL BEAMS [J].
BOUCHAL, Z ;
OLIVIK, M .
JOURNAL OF MODERN OPTICS, 1995, 42 (08) :1555-1566