Materials science and biophysics applications at the ISOLDE radioactive ion beam facility

被引:6
作者
Wahl, U. [1 ,2 ]
机构
[1] Inst Tecnol & Nucl, Estr Nacl 10, P-2686953 Sacavem, Portugal
[2] Univ Lisbon, Ctr Fis Nucl, P-1649003 Lisbon, Portugal
关键词
Radioactive ion beams; Mass separators; Nuclear methods; SOLID-STATE PHYSICS; DIFFUSION PROFILES; LATTICE SITES; ISOTOPES; SEMICONDUCTORS; SPECTROSCOPY; DEFECTS; ZNO; LOCATION; ELEMENTS;
D O I
10.1016/j.nimb.2011.04.082
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The ISOLDE isotope separator facility at CERN provides a variety of radioactive ion beams, currently more than 800 different isotopes from similar to 70 chemical elements. The radioisotopes are produced on-line by nuclear reactions from a 1.4 GeV proton beam with various types of targets, outdiffusion of the reaction products and, if possible, chemically selective ionisation, followed by 60 kV acceleration and mass separation. While ISOLDE is mainly used for nuclear and atomic physics studies, applications in materials science and biophysics account for a significant part (currently similar to 15%) of the delivered beam time, requested by 18 different experiments. The ISOLDE materials science and biophysics community currently consists of similar to 80 scientists from more than 40 participating institutes and 21 countries. In the field of materials science, investigations focus on the study of semiconductors and oxides, with the recent additions of nanoparticles and metals, while the biophysics studies address the toxicity of metal ions in biological systems. The characterisation methods used are typical radioactive probe techniques such as Mossbauer spectroscopy, perturbed angular correlation, emission channeling, and tracer diffusion studies. In addition to these "classic" methods of nuclear solid state physics, also standard semiconductor analysis techniques such as photoluminescence or deep level transient spectroscopy profit from the application of radioactive isotopes, which helps them to overcome their chemical "blindness" since the nuclear half life of radioisotopes provides a signal that changes in time with characteristic exponential decay or saturation curves. In this presentation an overview will be given on the recent research activities in materials science and biophysics at ISOLDE, presenting some of the highlights during the last five years, together with a short outlook on the new developments under way. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3014 / 3020
页数:7
相关论文
共 50 条
[31]   Emerging applications of stimulated Raman scattering microscopy in materials science [J].
Cheng, Qian ;
Miao, Yupeng ;
Wild, Joseph ;
Min, Wei ;
Yang, Yuan .
MATTER, 2021, 4 (05) :1460-1483
[32]   Design of a two-ion-source (2-IS) beam transport line for the production of multi charged radioactive ion beams [J].
Banerjee, V ;
Chakrabarti, A ;
Bandyopadhyay, A ;
Chattopadhyay, S ;
Polley, A ;
Nakagawa, T ;
Kamigaito, O ;
Goto, A ;
Yano, Y .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2000, 447 (03) :345-349
[33]   Corvus: a framework for interfacing scientific software for spectroscopic and materials science applications [J].
Story, S. M. ;
Vila, F. D. ;
Kas, J. J. ;
Raniga, K. B. ;
Pemmaraju, C. D. ;
Rehr, J. J. .
JOURNAL OF SYNCHROTRON RADIATION, 2019, 26 :1694-1704
[34]   New laser setup for the selective isotope production and investigation in a laser ion source at the IRIS (Investigation of Radioactive Isotopes on Synchrocyclotron) facility [J].
Barzakh, A. E. ;
Fedorov, D. V. ;
Ivanov, V. S. ;
Molkanov, P. L. ;
Panteleev, V. N. ;
Volkov, Yu. M. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (02)
[35]   First Direct Measurement of an Astrophysical p-Process Reaction Cross Section Using a Radioactive Ion Beam [J].
Lotay, G. ;
Gillespie, S. A. ;
Williams, M. ;
Rauscher, T. ;
Alcorta, M. ;
Amthor, A. M. ;
Andreoiu, C. A. ;
Baal, D. ;
Ball, G. C. ;
Bhattacharjee, S. S. ;
Behnamian, H. ;
Bildstein, V ;
Burbadge, C. ;
Catford, W. N. ;
Doherty, D. T. ;
Esker, N. E. ;
Garcia, F. H. ;
Garnsworthy, A. B. ;
Hackman, G. ;
Hallam, S. ;
Hudson, K. A. ;
Jazrawi, S. ;
Kasanda, E. ;
Kennington, A. R. L. ;
Kim, Y. H. ;
Lennarz, A. ;
Lubna, R. S. ;
Natzke, C. R. ;
Nishimura, N. ;
Olaizola, B. ;
Paxman, C. ;
Psaltis, A. ;
Svensson, C. E. ;
Williams, J. ;
Wallis, B. ;
Yates, D. ;
Walter, D. ;
Davids, B. .
PHYSICAL REVIEW LETTERS, 2021, 127 (11)
[36]   Radioactive ion beam monitoring system and simulation of the DRIB's complex target-catcher unit. [J].
Oganessian, Yu. Ts. ;
Gulbekian, G. G. ;
Mitrofanov, S. V. ;
Denisov, S. V. ;
Tarasov, O. B. .
International Symposium on Exotic Nuclei, 2007, 912 :322-331
[37]   Ion beam irradiation of phase change materials: A route to material properties investigation and engineering [J].
Privitera, S. M. S. ;
Rimini, E. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2021, 135
[38]   Modification of Hg1-xCdxTe and related materials by ion-beam treatment [J].
Mynbaev, KD ;
Ivanov-Omskii, VI .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 371 (1-2) :153-156
[39]   Modeling of intense pulsed ion beam heated masked targets for extreme materials characterization [J].
Barnard, John J. ;
Schenkel, Thomas .
JOURNAL OF APPLIED PHYSICS, 2017, 122 (19)
[40]   Applications of ion microscopy and in situ electron microscopy to the study of electronic materials and devices [J].
Hull, R ;
Demarest, J ;
Dunn, D ;
Stach, EA ;
Yuan, Q .
MICROSCOPY AND MICROANALYSIS, 1998, 4 (03) :308-316