Efficient Computation of Ridge-Regression Best Linear Unbiased Prediction in Genomic Selection in Plant Breeding

被引:41
作者
Piepho, H. P. [1 ]
Ogutu, J. O. [1 ]
Schulz-Streeck, T. [1 ]
Estaghvirou, B. [1 ]
Gordillo, A. [2 ]
Technow, F. [3 ]
机构
[1] Univ Hohenheim, Inst Crop Sci, Bioinformat Unit, D-70599 Stuttgart, Germany
[2] AgReliant Genet LLC, Lebanon, IN 46052 USA
[3] Univ Hohenheim, Inst Plant Breeding, D-70599 Stuttgart, Germany
关键词
GENOMEWIDE SELECTION; QUANTITATIVE TRAITS; GENETIC VALUES; INFORMATION; MAIZE; MODEL;
D O I
10.2135/cropsci2011.11.0592
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Computational efficiency of procedures for genomic selection is an important issue when cross-validation is used for model selection and evaluation. Moreover, limited computational resources may be a bottleneck when processing large datasets. This paper reviews several options for computing ridge-regression best linear unbiased prediction (RR-BLUP) in genomic selection and compares their computational efficiencies when using a mixed model package. Attention is also given to the problem of singular genetic variance-covariance. Annotated code is provided for implementing and evaluating the methods using the MIXED procedure of SAS. It is concluded that a recently proposed method based on a spectral decomposition of the variance-covariance matrix of the data is preferable compared to established methods because of its superior computational efficiency and applicability also for singular genetic variance-covariance.
引用
收藏
页码:1093 / 1104
页数:12
相关论文
共 31 条
[1]   Genome-based prediction of testcross values in maize [J].
Albrecht, Theresa ;
Wimmer, Valentin ;
Auinger, Hans-Juergen ;
Erbe, Malena ;
Knaak, Carsten ;
Ouzunova, Milena ;
Simianer, Henner ;
Schoen, Chris-Carolin .
THEORETICAL AND APPLIED GENETICS, 2011, 123 (02) :339-350
[2]  
[Anonymous], 2008, LINEAR MODELS GEN LE
[3]  
[Anonymous], 2003, Semiparametric Regression
[4]  
[Anonymous], 2011, R: A Language and Environment for Statistical Computing
[5]  
[Anonymous], 1992, Variance Components
[6]   Estimation of breeding values of inbred lines using best linear unbiased prediction (BLUP) and genetic similarities [J].
Bauer, Andrea M. ;
Reetz, Tobias C. ;
Leon, Jens .
CROP SCIENCE, 2006, 46 (06) :2685-2691
[7]   Prospects for genomewide selection for quantitative traits in maize [J].
Bernardo, Rex ;
Yu, Jianming .
CROP SCIENCE, 2007, 47 (03) :1082-1090
[8]   Prediction of Genetic Values of Quantitative Traits in Plant Breeding Using Pedigree and Molecular Markers [J].
Crossa, Jose ;
de los Campos, Gustavo ;
Perez, Paulino ;
Gianola, Daniel ;
Burgueno, Juan ;
Luis Araus, Jose ;
Makumbi, Dan ;
Singh, Ravi P. ;
Dreisigacker, Susanne ;
Yan, Jianbing ;
Arief, Vivi ;
Banziger, Marianne ;
Braun, Hans-Joachim .
GENETICS, 2010, 186 (02) :713-U406
[9]  
Endelman J, 2011, RRBLUP GENOMIC SELEC
[10]   The impact of genetic relationship information on genome-assisted breeding values [J].
Habier, D. ;
Fernando, R. L. ;
Dekkers, J. C. M. .
GENETICS, 2007, 177 (04) :2389-2397