Number fields generated by the 3-torsion points of an elliptic curve

被引:10
作者
Bandini, Andrea [2 ]
Paladino, Laura [1 ]
机构
[1] Univ Calabria, Dipartimento Matemat, I-87036 Arcavacata Di Rende, CS, Italy
[2] Univ Parma, Dipartimento Matemat, I-43124 Parma, Italy
来源
MONATSHEFTE FUR MATHEMATIK | 2012年 / 168卷 / 02期
关键词
Elliptic curves; Torsion points; DIVISIBILITY;
D O I
10.1007/s00605-012-0377-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be an elliptic curve, m a positive number and the m-torsion subgroup of . Let P (1) = (x (1), y (1)), P (2) = (x (2), y (2)) form a basis of . We prove that in general. For the case m = 3 we provide a description of all the possible extensions in terms of generators, degree and Galois groups.
引用
收藏
页码:157 / 181
页数:25
相关论文
共 16 条
[1]  
[Anonymous], 1985, ANN MATH STUDIES
[2]  
[Anonymous], 2001, LECT NOTES MATH
[4]   3-Selmer groups for curves y2=x3+a [J].
Bandini, Andrea .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (02) :429-445
[5]   Local-global divisibility of rational points in some commutative algebraic groups [J].
Dvornicich, R ;
Zannier, U .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2001, 129 (03) :317-338
[6]   On a local-global principle for the divisibility of a rational point by a positive integer [J].
Dvornicich, Roberto ;
Zannier, Umberto .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 :27-34
[7]  
Knapp A., 1992, ELLIPTIC CURVES
[8]   RATIONAL ISOGENIES OF PRIME DEGREE [J].
MAZUR, B .
INVENTIONES MATHEMATICAE, 1978, 44 (02) :129-162
[9]  
Mazur B., 1977, PUBL MATH-PARIS, V47, P33, DOI [DOI 10.1007/BF02684339, 10.1007/BF02684339]
[10]  
Paladino L., ARXIV11073431