Complete Many-Valued Lattices

被引:0
作者
Eklund, Patrik [1 ]
Gutierrez Garcia, Javier [2 ]
Hoehle, Ulrich [3 ]
Kortelainen, Jari [4 ]
机构
[1] Univ Umea, Dept Comp Sci, Umea, Sweden
[2] Univ Basque Country, UPV EHU, Dept Matemat, Apdo 644, E-48080 Bilbao, Spain
[3] Berg Univ Wuppertal, Fak Math & Nat Wissensch, D-42097 Wuppertal, Germany
[4] South Eastern Finland Univ Appl Sci, Dept Informat Technol, FI-50101 Mikkeli, Finland
来源
2017 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE) | 2017年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Let Sup be the category of complete lattices and join preserving maps. The aim of this paper is to show that the theory of complete many-valued lattices exists. For this purpose we recall the concept of many-valued preordered sets and show that the category of many-valued join-complete lattices is isomorphic to the category of right modules in Sup - a theorem which goes back to I. Stubbe in a more general context given by quantaloid enriched categories. Finally, we will explain the presented theory by some natural examples, and do not hesitate to apply the theory to a simple stochastic linear programming problem.
引用
收藏
页数:5
相关论文
共 12 条
[1]   Enriched categories and many-valued preorders: Categorical, semantical, and topological perspectives [J].
Denniston, Jeffrey T. ;
Melton, Austin ;
Rodabaugh, Stephen E. .
FUZZY SETS AND SYSTEMS, 2014, 256 :4-56
[2]  
Eklund P., SEMIGROUPS COMPLETE
[3]   A survey on the categorical term construction with applications [J].
Eklund, Patrik ;
Hohle, Ulrich ;
Kortelainen, Jari .
FUZZY SETS AND SYSTEMS, 2016, 298 :128-157
[4]   Tensor products of complete lattices and their application in constructing quantales [J].
Gutierrez Garcia, Javier ;
Hoehle, Ulrich ;
Kubiak, Tomasz .
FUZZY SETS AND SYSTEMS, 2017, 313 :43-60
[5]  
Kall P., 2011, INT SERIES OPERATION, V156
[6]  
Kelly G. M., 1982, SOC LECT NOTES SERIE, V64
[7]  
Klement E.P., 2000, TRIANGULAR NORMS TRE, V8
[8]  
Mac Lane S., 1998, Graduate Texts in Mathematics, V5
[9]  
Ovchinnikov S. V., 1984, Aspects of vagueness, P105, DOI [10.1007/978-94-009-6309-2, DOI 10.1007/978-94-009-6309-2]
[10]  
Rosenthal K. I., 1990, Pitman Research Notes in Mathematics, V234