Absorbing-state phase transition for driven-dissipative stochastic dynamics on Z

被引:40
作者
Rolla, Leonardo T. [1 ,2 ]
Sidoravicius, Vladas [1 ]
机构
[1] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[2] Ecole Normale Super, F-75005 Paris, France
基金
巴西圣保罗研究基金会;
关键词
CRITICAL-BEHAVIOR; SPREAD; SANDPILE; MODEL;
D O I
10.1007/s00222-011-0344-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the long-time behavior of conservative interacting particle systems in Z: the activated random walk model for reaction-diffusion systems and the stochastic sandpile. We prove that both systems undergo an absorbing-state phase transition.
引用
收藏
页码:127 / 150
页数:24
相关论文
共 37 条
[21]  
Hoffman Christopher, 2004, Unpublished
[22]   Comment on "Critical behavior of a two-species reaction-diffusion problem" [J].
Janssen, HK .
PHYSICAL REVIEW E, 2001, 64 (05) :3
[23]   The spread of a rumor or infection in a moving population [J].
Kesten, H ;
Sidoravicius, V .
ANNALS OF PROBABILITY, 2005, 33 (06) :2402-2462
[24]  
Kesten H., 2003, Elec. J. Probab, V8, P1
[25]   A phase transition in a model for the spread of an infection [J].
Kesten, Harry ;
Sidoravicius, Vladas .
ILLINOIS JOURNAL OF MATHEMATICS, 2006, 50 (03) :547-634
[26]   A shape theorem for the spread of an infection [J].
Kesten, Harry ;
Sidoravicius, Vladas .
ANNALS OF MATHEMATICS, 2008, 167 (03) :701-766
[27]   EFFECTS OF POLLUTION ON CRITICAL POPULATION-DYNAMICS [J].
KREE, R ;
SCHAUB, B ;
SCHMITTMANN, B .
PHYSICAL REVIEW A, 1989, 39 (04) :2214-2221
[28]   Universal scaling behavior of non-equilibrium phase transitions [J].
Lübeck, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (31-32) :3977-4118
[29]   2-STATE MODEL OF SELF-ORGANIZED CRITICALITY [J].
MANNA, SS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (07) :L363-L369
[30]  
Meester Ronald, 2005, Markov Processes 4 Related Fields, V11, P355