Absorbing-state phase transition for driven-dissipative stochastic dynamics on Z

被引:40
作者
Rolla, Leonardo T. [1 ,2 ]
Sidoravicius, Vladas [1 ]
机构
[1] Inst Matematica Pura & Aplicada, BR-22460320 Rio De Janeiro, Brazil
[2] Ecole Normale Super, F-75005 Paris, France
基金
巴西圣保罗研究基金会;
关键词
CRITICAL-BEHAVIOR; SPREAD; SANDPILE; MODEL;
D O I
10.1007/s00222-011-0344-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the long-time behavior of conservative interacting particle systems in Z: the activated random walk model for reaction-diffusion systems and the stochastic sandpile. We prove that both systems undergo an absorbing-state phase transition.
引用
收藏
页码:127 / 150
页数:24
相关论文
共 37 条
[1]  
Amir G, 2010, ELECTRON COMMUN PROB, V15, P119
[2]   INVARIANT-MEASURES FOR THE ZERO RANGE PROCESS [J].
ANDJEL, ED .
ANNALS OF PROBABILITY, 1982, 10 (03) :525-547
[3]   SELF-ORGANIZED CRITICALITY [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW A, 1988, 38 (01) :364-374
[4]   SELF-ORGANIZED CRITICALITY - AN EXPLANATION OF 1/F NOISE [J].
BAK, P ;
TANG, C ;
WIESENFELD, K .
PHYSICAL REVIEW LETTERS, 1987, 59 (04) :381-384
[5]   Critical behavior of a two-species reaction-diffusion problem [J].
de Freitas, JE ;
Lucena, LS ;
da Silva, LR ;
Hilhorst, HJ .
PHYSICAL REVIEW E, 2000, 61 (06) :6330-6336
[6]   The Abelian sandpile and related models [J].
Dhar, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 263 (1-4) :4-25
[7]   Theoretical studies of self-organized criticality [J].
Dhar, Deepak .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 369 (01) :29-70
[8]  
Diaconis P., 1991, Rend. Sem. Mat. Univ. Politec. Torino, V49, P95
[9]   Paths to self-organized criticality [J].
Dickman, R ;
Muñoz, MA ;
Vespignani, A ;
Zapperi, S .
BRAZILIAN JOURNAL OF PHYSICS, 2000, 30 (01) :27-41
[10]   Nonequilibrium phase transitions in epidemics and sandpiles [J].
Dickman, R .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 306 (1-4) :90-97