Nonlinear wave interaction problems in the three-dimensional case

被引:13
作者
Curro, C. [1 ]
Manganaro, N. [1 ]
Pavlov, M. V. [2 ,3 ,4 ]
机构
[1] Univ Messina, MIFT, Viale Ferdinando Stagno DAlcontres 31, I-98166 Messina, Italy
[2] Russian Acad Sci, Lebedev Phys Inst, Sect Math Phys, Leninskij Prospekt 53, Moscow 119991, Russia
[3] Natl Res Nucl Univ MEPHI, Dept Appl Math, Kashirskoe Shosse 31, Moscow 115409, Russia
[4] Novosibirsk State Univ, Dept Mech & Math, 2 Pirogova St, Novosibirsk 630090, Russia
基金
俄罗斯科学基金会;
关键词
nonlinear wave interactions; hydrodynamic integrable systems; generalized hodograph method; QUASILINEAR HYPERBOLIC SYSTEMS; RIEMANN INVARIANTS; EXAMPLES;
D O I
10.1088/1361-6544/30/1/207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Three-dimensional nonlinear wave interactions have been analytically described. The procedure under interest can be applied to three-dimensional quasilinear systems of first order, whose hydrodynamic reductions are homogeneous semi-Hamiltonian hydrodynamic type systems (i. e. possess diagonal form and infinitely many conservation laws). The interaction of N waves was studied. In particular we prove that they behave like simple waves and they distort after the collision region. The amount of the distortion can be analytically computed.
引用
收藏
页码:207 / 224
页数:18
相关论文
共 31 条
[1]  
[Anonymous], 1984, APPL MATH SCI
[2]  
BURNAT M, 1975, ARCH MECH, V27, P49
[3]  
Burnat M., 1969, FLUID DYNAM T, V4, P17
[4]  
BURNAT M, 1970, SIBERIAN MATH J, V11, P210, DOI DOI 10.1007/BF00967297
[5]  
Burnat M, 1995, TOPOL METHOD NONL AN, V6, P97
[6]  
Courant R., 1948, Supersonic Flows and Shock Waves
[7]   Exact description of simple wave interactions in multicomponent chromatography [J].
Curro, C. ;
Fusco, D. ;
Manganaro, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (01)
[8]   Riemann problems and exact solutions to a traffic flow model [J].
Curro, C. ;
Manganaro, N. .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (07)
[9]   An exact description of nonlinear wave interaction processes ruled by 2 x 2 hyperbolic systems [J].
Curro, C. ;
Fusco, D. ;
Manganaro, N. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (04) :1227-1248
[10]   Differential Constraints and Exact Solution to Riemann Problems for a Traffic Flow Model [J].
Curro, C. ;
Fusco, D. ;
Manganaro, N. .
ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) :167-178