A generalised optimal linear quadratic tracker with universal applications - part 1: continuous-time systems

被引:16
作者
Ebrahimzadeh, Faezeh [1 ]
Tsai, Jason Sheng-Hong [1 ]
Liao, Ying Ting [1 ]
Chung, Min-Ching [1 ]
Guo, Shu-Mei [2 ]
Shieh, Leang-San [3 ]
Wang, Li [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Elect Engn, Tainan, Taiwan
[2] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan, Taiwan
[3] Univ Houston, Dept Elect & Comp Engn, Houston, TX USA
关键词
Optimal linear quadratic servomechanism; optimal iterative learning control; frequency shaping; PID controller; input constraint; non-minimum phase system; control zeros; FAULT-TOLERANT CONTROL; INPUT-DISTURBANCE APPROACH; DIGITAL PID CONTROLLER; ANALOG SYSTEMS; CONTROL DESIGN; STATE; DELAY; REJECTION; ACTUATOR;
D O I
10.1080/00207721.2016.1186239
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a generalised optimal linear quadratic analog tracker (LQAT) with universal applications for the continuous-time (CT) systems. This includes: (1) a generalised optimal LQAT design for the system with the pre-specified trajectories of the output and the control input and additionally with both the input-to-output direct-feed through term and known/estimated system disturbances or extra input/output signals; (2) a new optimal filter-shaped proportional plus integral state-feedback LQAT design for non-square non-minimum phase CT systems to achieve a minimum phase-like tracking performance; (3) a new approach for computing the control zeros of the given non-square CT system; and (4) a one-learning-epoch input-constrained iterative learning LQAT design for the repetitive CT system.
引用
收藏
页码:376 / 396
页数:21
相关论文
共 41 条
[11]   FREQUENCY-SHAPED COST FUNCTIONALS - EXTENSION OF LINEAR-QUADRATIC GAUSSIAN DESIGN METHODS [J].
GUPTA, NK .
JOURNAL OF GUIDANCE AND CONTROL, 1980, 3 (06) :529-535
[12]   Robust PID controller design for non-minimum phase time delay systems [J].
Huang, YJ ;
Wang, YJ .
ISA TRANSACTIONS, 2001, 40 (01) :31-39
[13]  
Latawiec K., 2000, Annual Reviews in Control, V24, P105, DOI 10.1016/S1367-5788(00)00006-7
[14]  
Lewis F., 1995, Optimal control
[15]  
Lewis FL., 1992, APPL OPTIMAL CONTROL
[16]   Intelligent double integral sliding-mode control for five-degree-of-freedom active magnetic bearing system [J].
Lin, F. -J. ;
Chen, S. -Y. ;
Huang, M. -S. .
IET CONTROL THEORY AND APPLICATIONS, 2011, 5 (11) :1287-1303
[17]  
Madsen JM, 2006, ASIAN J CONTROL, V8, P161, DOI 10.1111/j.1934-6093.2006.tb00266.x
[18]   ALL STABILIZING CONTROLLERS AS FREQUENCY-SHAPED STATE ESTIMATE FEEDBACK [J].
MOORE, JB ;
GLOVER, K ;
TELFORD, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1990, 35 (02) :203-208
[19]  
Nasiri M. R., 2006, IECON 2006. 32nd Annual Conference on IEEE Industrial Electronics (IEEE Cat. No. 06CH37763), P114, DOI 10.1109/IECON.2006.347445
[20]   Fault-tolerant control in dynamic systems: Application to a winding machine [J].
Noura, H ;
Sauter, D ;
Hamelin, F ;
Theilliol, D .
IEEE CONTROL SYSTEMS MAGAZINE, 2000, 20 (01) :33-49