Hydrodynamics and Brownian motions of a spheroid near a rigid wall

被引:39
|
作者
De Corato, M. [1 ]
Greco, F. [2 ]
D'Avino, G. [1 ]
Maffettone, P. L. [1 ]
机构
[1] Univ Naples Federico II, Dipartimento Ingn Chim Mat & Prod Ind, I-80125 Naples, Italy
[2] IRC CNR, Ist Ric Combust, I-80125 Naples, Italy
来源
JOURNAL OF CHEMICAL PHYSICS | 2015年 / 142卷 / 19期
关键词
ROTATIONAL DIFFUSION; COLLOIDAL PARTICLES; HINDERED DIFFUSION; VIDEO MICROSCOPY; DYNAMICS; SIMULATIONS; FLUID; NANOPARTICLES; SHAPE; BODY;
D O I
10.1063/1.4920981
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this work, we study in detail the hydrodynamics and the Brownian motions of a spheroidal particle suspended in a Newtonian fluid near a flat rigid wall. We employ 3D Finite Element Method (FEM) simulations to compute how the mobility tensor of the spheroid varies with both the particle-wall separation distance and the particle orientation. We then study the Brownian motion of the spheroid by means of a discretized Langevin equation. We specifically focus on the additional drift terms arising from the position and orientational dependence of the mobility matrix. In this respect, we also propose a numerically convenient approximation of the orientational divergence of the mobility matrix that is required in the solution of the Langevin equation. Our results illustrate that both hydrodynamics and Brownian motions of a spheroidal particle near a confining wall display novel features from those of a sphere in the same type of confinement. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Excited Brownian Motions
    Raimond, Olivier
    Schapira, Bruno
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2011, 8 : 19 - 41
  • [22] On fake Brownian motions
    Oleszlciewicz, Krzysztof
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (11) : 1251 - 1254
  • [23] Intersections of Brownian motions
    Khoshnevisan, D
    EXPOSITIONES MATHEMATICAE, 2003, 21 (02) : 97 - 114
  • [24] Perturbed Brownian motions
    Perman, M
    Werner, W
    PROBABILITY THEORY AND RELATED FIELDS, 1997, 108 (03) : 357 - 383
  • [25] Maximal Brownian motions
    Brossard, Jean
    Emery, Michel
    Leuridan, Christophe
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03): : 876 - 886
  • [26] ON ISOTROPIC BROWNIAN MOTIONS
    LEJAN, Y
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 70 (04): : 609 - 620
  • [27] FRACTIONAL BROWNIAN MOTIONS
    Fulinski, Andrzej
    ACTA PHYSICA POLONICA B, 2020, 51 (05): : 1097 - 1129
  • [28] Perturbed Brownian motions
    Mihael Perman
    Wendelin Werner
    Probability Theory and Related Fields, 1997, 108 : 357 - 383
  • [29] CONFLUENT BROWNIAN MOTIONS
    GEMAN, D
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (02) : 306 - 306
  • [30] ON WALSH BROWNIAN MOTIONS
    BARLOW, M
    PITMAN, J
    YOR, M
    LECTURE NOTES IN MATHEMATICS, 1989, 1372 : 275 - 293