Nanoscale characterization of metal/semiconductor nanocontacts

被引:0
|
作者
Tivarus, C [1 ]
Park, KB [1 ]
Hudait, MK [1 ]
Ringel, SA [1 ]
Pelz, JP [1 ]
机构
[1] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
来源
Characterization and Metrology for ULSI Technology 2005 | 2005年 / 788卷
关键词
BEEM; Schottky barrier; nanocontacts; Fermi level pinning; quantum wells; III-V semiconductors;
D O I
暂无
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Ballistic Electron Emission Microscopy (BEEM) and finite-element electrostatic modeling were used to quantify how "small-size " effects modify the energy barrier at metal/semiconductor nanostructure nanocontacts, formed by making Schottky contacts to cleaved edges of GaAs quantum wells (QWs). The Schottky barrier height over the QWs was found to systematically increase with decreasing QW width, by up to similar to 140 meV for a 1nm QW. This is mostly due to a large quantum-confinement increase (similar to 200 meV for a 1nm QW), modified by smaller decreases due to "environmental" electric field effects. Our modeling gives excellent quantitative agreement with measurements for a wide range of QW widths when both quantum confinement and environmental electric fields are considered.
引用
收藏
页码:280 / 284
页数:5
相关论文
共 50 条
  • [1] On the role of tunneling in metal-semiconductor nanocontacts
    Vostokov, NV
    Shashkin, VI
    JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2004, 99 (01) : 211 - 216
  • [2] Electrical properties of metal-semiconductor nanocontacts
    Vostokov, NV
    Shashkin, VI
    SEMICONDUCTORS, 2004, 38 (09) : 1047 - 1052
  • [3] On the role of tunneling in metal-semiconductor nanocontacts
    N. V. Vostokov
    V. I. Shashkin
    Journal of Experimental and Theoretical Physics, 2004, 99 : 211 - 216
  • [4] Metal-semiconductor nanocontacts: Silicon nanowires
    Landman, U
    Barnett, RN
    Scherbakov, AG
    Avouris, P
    PHYSICAL REVIEW LETTERS, 2000, 85 (09) : 1958 - 1961
  • [5] Electrical properties of metal-semiconductor nanocontacts
    N. V. Vostokov
    V. I. Shashkin
    Semiconductors, 2004, 38 : 1047 - 1052
  • [6] QUANTIZATION OF ELECTRICAL CONDUCTANCE IN METAL-SEMICONDUCTOR NANOCONTACTS
    Nawrocki, W.
    Wawrzyniak, M.
    Susla, B.
    Barnas, J.
    PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES: REVIEWS AND SHORT NOTES, 2007, : 562 - +
  • [7] Nanoscale chirality in metal and semiconductor nanoparticles
    Kumar, Jatish
    Thomas, K. George
    Liz-Marzan, Luis M.
    CHEMICAL COMMUNICATIONS, 2016, 52 (85) : 12555 - 12569
  • [8] NANOSCALE ULTRAFAST METAL-SEMICONDUCTOR METAL PHOTODETECTORS
    LIU, Y
    KHALIL, W
    FISCHER, PB
    CHOU, SY
    HSIANG, TY
    ALEXANDROU, S
    SOBOLEWSKI, R
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1992, 39 (11) : 2674 - 2675
  • [9] Cathodoluminescence Characterization of Semiconductor Doping at the Nanoscale
    Chen, Hung-Ling
    Scaccabarozzi, Andrea
    De Lepinau, Romaric
    Himwas, Chalermchai
    Rale, Pierre
    Oehler, Fabrice
    Lemaitre, Aristide
    Tchernycheva, Maria
    Harmand, Jean-Christophe
    Cattoni, Andrea
    Collin, Stephane
    2018 IEEE 7TH WORLD CONFERENCE ON PHOTOVOLTAIC ENERGY CONVERSION (WCPEC) (A JOINT CONFERENCE OF 45TH IEEE PVSC, 28TH PVSEC & 34TH EU PVSEC), 2018, : 1697 - 1701
  • [10] Nanoscale characterization of stresses in semiconductor devices
    Demarest, J
    Hull, R
    Schonenberg, KT
    Janssens, KGF
    MICROSCOPY OF SEMICONDUCTING MATERIALS 2001, 2001, (169): : 473 - 476