Change in distribution function from periodic orbits

被引:0
作者
Morriss, GP [1 ]
Rondoni, L
机构
[1] Univ New S Wales, Sch Phys, Sydney, NSW 2052, Australia
[2] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
[3] Politecn Torino, INFM, I-10129 Turin, Italy
关键词
entropy; nonequilibrium;
D O I
10.1016/j.physd.2003.09.030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using probability distributions obtained from periodic orbit expansions of steady states of thermostatted particle systems, we introduce a quantity which characterizes the distance of such steady states from equilibrium states. We call this property the periodic orbit entropy. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:377 / 382
页数:6
相关论文
共 21 条
  • [11] BOLTZMANN ENTROPY AND TIMES ARROW
    LEBOWITZ, JL
    [J]. PHYSICS TODAY, 1993, 46 (09) : 32 - 38
  • [12] THE NONEQUILIBRIUM LORENTZ GAS
    LLOYD, J
    NIEMEYER, M
    RONDONI, L
    MORRISS, GP
    [J]. CHAOS, 1995, 5 (03) : 536 - 551
  • [13] DIFFUSION IN A PERIODIC LORENTZ GAS
    MORAN, B
    HOOVER, WG
    BESTIALE, S
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1987, 48 (3-4) : 709 - 726
  • [14] Recent results for the thermostatted Lorentz gas
    Morriss, GP
    Dettmann, CP
    Rondoni, L
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1997, 240 (1-2) : 84 - 95
  • [15] A DYNAMICAL PARTITION-FUNCTION FOR THE LORENTZ GAS
    MORRISS, GP
    RONDONI, L
    COHEN, EGD
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (1-2) : 35 - 43
  • [16] PERIODIC ORBIT EXPANSIONS FOR THE LORENTZ GAS
    MORRISS, GP
    RONDONI, L
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1994, 75 (3-4) : 553 - 584
  • [18] Lyapunov spectra of periodic orbits for a many-particle system
    Taniguchi, T
    Dettmann, CP
    Morriss, GP
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2002, 109 (3-4) : 747 - 764
  • [19] Shear flow, viscous heating, and entropy balance from dynamical systems
    Tél, T
    Vollmer, J
    Mátyá, L
    [J]. EUROPHYSICS LETTERS, 2001, 53 (04): : 458 - 464
  • [20] Tolman RC., 1938, The Principles of Statistical Mechanics