On the sum of powers of the Aα-eigenvalues of graphs

被引:1
作者
Lin, Zhen [1 ,2 ,3 ]
机构
[1] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
[2] Peoples Govt Qinghai Prov, Acad Plateau Sci & Sustainabil, Xining, Peoples R China
[3] Beijing Normal Univ, Beijing, Peoples R China
来源
MATHEMATICAL MODELLING AND CONTROL | 2022年 / 2卷 / 02期
基金
中国国家自然科学基金;
关键词
A(alpha)-matrix; A(alpha)-eigenvalues; majorization; NORMALIZED LAPLACIAN EIGENVALUES; MULTIPLICITY; BOUNDS; ENERGY;
D O I
10.3934/mmc.2022007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A(G) and D(G) be the adjacency matrix and the degree diagonal matrix of a graph G, respectively. For any real number alpha is an element of[0, 1], Nikiforov recently defined the A(alpha)-matrix of G as A(alpha)(G) = alpha D(G) + (1 - alpha)A(G). The graph invariant S-alpha(p) (G) is the sum of the p-th power of the A(alpha)-eigenvalues of G for 1/2 < alpha < 1, which has a close relation to the alpha-Estrada index. In this paper, we establish some bounds on S-alpha(p) (G) and characterize the extremal graphs. In particular, we present some bounds on S-alpha(p) (G) in terms of the degree sequences, order and size of G by using majorization techniques. Moreover, we give lower and upper bounds for S-alpha(p) (G) of a bipartite graph and characterize the extremal graphs.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 42 条
[1]   A relation between the Laplacian and signless Laplacian eigenvalues of a graph [J].
Akbari, Saieed ;
Ghorbani, Ebrahim ;
Koolen, Jack H. ;
Oboudi, Mohammad Reza .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2010, 32 (03) :459-464
[2]  
Akbari S, 2010, ELECTRON J COMB, V17
[3]  
[Anonymous], 2009, B CI SCI MATH NAT S
[4]   On two conjectures on sum of the powers of signless Laplacian eigenvalues of a graph [J].
Ashraf, Firouzeh .
LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (07) :1314-1320
[5]  
Ayyaswamy SK, 2011, MATCH-COMMUN MATH CO, V66, P785
[6]   New bounds of degree-based topological indices for some classes of c-cyclic graphs [J].
Bianchi, Monica ;
Cornaro, Alessandra ;
Palacios, Jose Luis ;
Torriero, Anna .
DISCRETE APPLIED MATHEMATICS, 2015, 184 :62-75
[7]  
Bollobás B, 1998, ARS COMBINATORIA, V50, P225
[8]  
Borovicanin B, 2017, MATCH-COMMUN MATH CO, V78, P17
[9]  
Bozkurt SB, 2012, MATCH-COMMUN MATH CO, V68, P917
[10]   GRAPHS WITH CLUSTERS PERTURBED BY REGULAR GRAPHS-Aα-SPECTRUM AND APPLICATIONS [J].
Cardoso, Domingos M. ;
Pasten, Germain ;
Rojo, Oscar .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (02) :451-466