Novel predicted RNA-binding domains associated with the translation machinery

被引:165
作者
Aravind, L
Koonin, EV [1 ]
机构
[1] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20894 USA
[2] Texas A&M Univ, Dept Biol, College Stn, TX 77843 USA
关键词
RNA-binding domains; ribosomal protein S4; archaeosine transglycosylase; pseudouridine synthase; translation machinery;
D O I
10.1007/PL00006472
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two previously undetected domains were identified in a variety of RNA-binding proteins, particularly RNA-modifying enzymes, using methods for sequence profile analysis. A small domain consisting of 60-65 amino acid residues was detected in the ribosomal protein S4, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterized, small proteins that may be involved in translation regulation. Another novel domain, designated PUA domain, after PseudoUridine synthase and Archaeosine transglycosylase, was detected in archaeal and eukaryotic pseudouridine synthases, archaeal archaeosine synthases, a family of predicted ATPases that may be involved in RNA modification, a family of predicted archaeal and bacterial rRNA methylases. Additionally, the PUA domain was detected in a family of eukaryotic proteins that also contain a domain homologous to the translation initiation factor eIF1/SUI1; these proteins may comprise a novel type of translation factors. Unexpectedly, the PUA domain was detected also in bacterial and yeast glutamate kinases; this is compatible with the demonstrated role of these enzymes in the regulation of the expression of other genes. We propose that the S4 domain and the PUA domain bind RNA molecules with complex folded structures, adding to the growing collection of nucleic acid-binding domains associated with DNA and RNA modification enzymes. The evolution of the translation machinery components containing the S4, PUA, and SUI1 domains must have included several events of lateral gene transfer and gene loss as well as lineage-specific domain fusions.
引用
收藏
页码:291 / 302
页数:12
相关论文
共 57 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]   MESSENGER-RNA RECOGNITION BY FRAGMENTS OF RIBOSOMAL-PROTEIN S4 [J].
BAKER, AM ;
DRAPER, DE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (39) :22939-22945
[3]   The yeast gene YNL292w encodes a pseudouridine synthase (Pus4) catalyzing the formation of Psi(55) in both mitochondrial and cytoplasmic tRNAs [J].
Becker, HF ;
Motorin, Y ;
Planta, RJ ;
Grosjean, H .
NUCLEIC ACIDS RESEARCH, 1997, 25 (22) :4493-4499
[4]   A P-LOOP-LIKE MOTH IN A WIDESPREAD ATP PYROPHOSPHATASE DOMAIN - IMPLICATIONS FOR THE EVOLUTION OF SEQUENCE MOTIFS AND ENZYME-ACTIVITY [J].
BORK, P ;
KOONIN, EV .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1994, 20 (04) :347-355
[5]   STRUCTURE OF TYROSYL TRANSFER-RNA SYNTHETASE REFINED AT 2.3-A RESOLUTION - INTERACTION OF THE ENZYME WITH THE TYROSYL ADENYLATE INTERMEDIATE [J].
BRICK, P ;
BHAT, TN ;
BLOW, DM .
JOURNAL OF MOLECULAR BIOLOGY, 1989, 208 (01) :83-98
[6]   The solution structure of the S1 RNA binding domain: A member of an ancient nucleic acid-binding fold [J].
Bycroft, M ;
Hubbard, TJP ;
Proctor, M ;
Freund, SMV ;
Murzin, AG .
CELL, 1997, 88 (02) :235-242
[7]   CONSTRUCTION OF HETERODIMER TYROSYL-TRANSFER RNA-SYNTHETASE SHOWS TRANSFER RNA-TYR INTERACTS WITH BOTH SUBUNITS [J].
CARTER, P ;
BEDOUELLE, H ;
WINTER, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (05) :1189-1192
[8]   Ancient ciphers: Translation in Archaea [J].
Dennis, PP .
CELL, 1997, 89 (07) :1007-1010
[9]   The helix-hairpin-helix DNA-binding motif: A structural basis for non-sequence-specific recognition of DNA [J].
Doherty, AJ ;
Serpell, LC ;
Ponting, CP .
NUCLEIC ACIDS RESEARCH, 1996, 24 (13) :2488-2497
[10]   POSTTRANSCRIPTIONAL MODIFICATION OF TRANSFER-RNA IN THERMOPHILIC ARCHAEA (ARCHAEBACTERIA) [J].
EDMONDS, CG ;
CRAIN, PF ;
GUPTA, R ;
HASHIZUME, T ;
HOCART, CH ;
KOWALAK, JA ;
POMERANTZ, SC ;
STETTER, KO ;
MCCLOSKEY, JA .
JOURNAL OF BACTERIOLOGY, 1991, 173 (10) :3138-3148