Kepler problem in a constant-curvature space

被引:2
|
作者
Pronko, G. P. [1 ,2 ]
机构
[1] Inst High Energy Phys, Protvino, Moscow Oblast, Russia
[2] Natl Res Ctr Demokritos, Inst Phys Nucl, Athens, Greece
基金
俄罗斯基础研究基金会;
关键词
dynamical system; constant-curvature space; Kepler problem;
D O I
10.1007/s11232-008-0067-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We algebraically derive the spectrum of a hydrogen atom in a space with constant curvature.
引用
收藏
页码:780 / 788
页数:9
相关论文
共 50 条
  • [1] Kepler problem in a constant-curvature space
    G. P. Pronko
    Theoretical and Mathematical Physics, 2008, 155 : 780 - 788
  • [3] The Kepler problem and the Laplace-Runge-Lenz vector on spaces of constant curvature and arbitrary signature
    Cariñena J.F.
    Rañada M.F.
    Santander M.
    Qualitative Theory of Dynamical Systems, 2008, 7 (1) : 87 - 99
  • [4] The Kepler problem in the Snyder space
    Leiva, Carlos
    Saavedra, Joel
    Villanueva, J. R.
    PRAMANA-JOURNAL OF PHYSICS, 2013, 80 (06): : 945 - 951
  • [5] The Kepler problem in the Snyder space
    CARLOS LEIVA
    JOEL SAAVEDRA
    J R VILLANUEVA
    Pramana, 2013, 80 : 945 - 951
  • [6] Coulomb Problem in a One-Dimensional Space with Constant Positive Curvature
    L. G. Mardoyan
    G. S. Pogosyan
    A. N. Sissakian
    Theoretical and Mathematical Physics, 2003, 135 : 808 - 813
  • [7] Coulomb problem in a one-dimensional space with constant positive curvature
    Mardoyan, LG
    Pogosyan, GS
    Sissakian, AN
    THEORETICAL AND MATHEMATICAL PHYSICS, 2003, 135 (03) : 808 - 813
  • [8] Variational property of periodic Kepler orbits in constant curvature spaces
    Deng, Yanxia
    Diacu, Florin
    Zhu, Shuqiang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (10) : 5851 - 5869
  • [9] Hamiltonian Dynamics for the Kepler Problem in a Deformed Phase Space
    Hounkonnou, Mahouton Norbert
    Landalidji, Mahougnon Justin
    GEOMETRIC METHODS IN PHYSICS XXXVII, 2020, : 34 - 48
  • [10] The restricted two-body problem in constant curvature spaces
    Borisov, Alexey V.
    Mamaev, Ivan S.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2006, 96 (01): : 1 - 17